精英家教网 > 高中数学 > 题目详情
7.设数列{an}满足a1=1,(1-an+1)(1+an)=1(n∈N+),则$\sum_{k=1}^{100}{({{a_k}{a_{k+1}}})}$的值为$\frac{100}{101}$.

分析 a1=1,(1-an+1)(1+an)=1(n∈N+),化简可得:$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,利用等差数列的通项公式可得:an,再利用“裂项求和”方法即可得出.

解答 解:∵a1=1,(1-an+1)(1+an)=1(n∈N+),
∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,
∴数列$\{\frac{1}{{a}_{n}}\}$是等差数列,首项与公差都为1.
∴$\frac{1}{{a}_{n}}$=1+(n-1)=n,
∴an=$\frac{1}{n}$.
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴$\sum_{k=1}^{100}{({{a_k}{a_{k+1}}})}$=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{100}-\frac{1}{101})$
=1-$\frac{1}{101}$=$\frac{100}{101}$.
故答案为:$\frac{100}{101}$.

点评 本题考查了递推关系、等差数列的通项公式、“裂项求和”方法,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=mex+x2+nx,{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的取值范围为(  )
A.(0,4)B.[0,4)C.[0,4]D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某单位有420名职工,现采用系统抽样方法抽取21人做问卷调查,将420人按1,2,…,420随机编号,则抽取的21人中,编号落入区间[281,420]的人数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.等差数列{an}的前n项和为Sn,a22-3a7=2,且$\frac{1}{a_2},\sqrt{{S_2}-3},{S_3}$成等比数列,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=$\frac{4(n+1)}{{{a_n}^2{a_{n+2}}^2}}$,数列{bn}的前n项和为Tn,若对于任意的n∈N*,都有64Tn<|3λ-1|成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=2sin(ωx+$\frac{π}{3}$)(ω>0)的图象与函数g(x)=cos(2x+φ)(|φ|<$\frac{π}{2}$)的图象的对称中心完全相同,则φ=(  )
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={-2,-1,0,1,2},集合B={x∈Z|x2-x-2≥0},则A∩∁ZB=(  )
A.{-2,-1,0,1,2}B.[-2,2]C.[0,1]D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,且|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则向量$\overrightarrow{b}$-$\overrightarrow{a}$在向量$\overrightarrow{a}$方向上的投影是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,右顶点为M,椭圆C过点(-1,$\frac{3}{2}$),直线l交椭圆C于A,B两点(A,B异于M),且MA⊥MB.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若P为线段AB的中点,求直线MP的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A={x||x-2|<1},集合B={x|x2-2>0},则A∩B=($\sqrt{2}$,3).

查看答案和解析>>

同步练习册答案