精英家教网 > 高中数学 > 题目详情
12.设集合A={-2,-1,0,1,2},集合B={x∈Z|x2-x-2≥0},则A∩∁ZB=(  )
A.{-2,-1,0,1,2}B.[-2,2]C.[0,1]D.{0,1}

分析 求出集合B,从而求出∁ZB,进而求出其和A的交集即可.

解答 解:∵集合A={-2,-1,0,1,2},
集合B={x∈Z|x2-x-2≥0}={x|x≥2或x≤-1},
∴∁ZB={0,1},
∴A∩∁ZB={0,1}.
故选:D.

点评 本题考查了集合的运算性质,考查不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在平行四边形ABCD中,AB⊥BD,4•AB2+2•BD2=1.将此平行四边形沿BD折成直二面角,则三棱锥A-BCD外接球的表面积为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的首项a1=1,且an+1=2an+1
(1)求数列{an}的通项公式an
(2)设数列{cn}对任意n∈N+,都有$\frac{C_1}{2}+\frac{C_2}{2^2}+…+\frac{C_n}{2^n}$=an+1成立,求c1+c2+…+c2016的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=g(x)的图象是由函数f(x)=sin2x-$\sqrt{3}$cos2x的图象向左平移$\frac{π}{6}$个单位而得到的,则函数y=g(x)的图象与直线x=0,x=$\frac{2π}{3}$,x轴围成的封闭图形的面积为(  )
A.0B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设数列{an}满足a1=1,(1-an+1)(1+an)=1(n∈N+),则$\sum_{k=1}^{100}{({{a_k}{a_{k+1}}})}$的值为$\frac{100}{101}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=|x-1|+a|x-2|,a∈R
(Ⅰ)若函数f(x)存在最小值,求a的取值范围;
(Ⅱ)若对任意x∈R,有f(x)≥$\frac{1}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(x-2)lnx+1.
(1)判断f(x)的导函数f′(x)在(1,2)上零点的个数;
(2)求证f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知|$\overrightarrow a}$|=2,$|{\overrightarrow b}$|=3,且$\overrightarrow a$、$\overrightarrow b$的夹角为$\frac{π}{3}$,则|3$\overrightarrow a$-2$\overrightarrow b}$|=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设F1,F2分别是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,AF1=3BF1
(Ⅰ)若AB=4,△ABF2的周长为16,求AF2
(Ⅱ)若cos∠AF2B=$\frac{3}{5}$,求椭圆E的离心率.

查看答案和解析>>

同步练习册答案