分析 (I)由题意可知:f(x)=$\left\{\begin{array}{l}{(-1-a)x+2a+1,x<1}\\{(1-a)x+2a-1,1≤x<2}\\{(a+1)x-2a-1,x≥2}\end{array}\right.$,由于f(x)存在最小值,可得$\left\{\begin{array}{l}{-1-a≤0}\\{a+1≥0}\end{array}\right.$,解得a即可得出.
(II)由(I)可知:a≥-1,因此$\left\{\begin{array}{l}{1-a≥0}\\{f(1)=\frac{1}{2}}\end{array}\right.$,或$\left\{\begin{array}{l}{1-a<0}\\{f(2)=\frac{1}{2}}\end{array}\right.$,解得a即可得出.
解答 解:(I)由题意可知:f(x)=$\left\{\begin{array}{l}{(-1-a)x+2a+1,x<1}\\{(1-a)x+2a-1,1≤x<2}\\{(a+1)x-2a-1,x≥2}\end{array}\right.$,
∵f(x)存在最小值,∴$\left\{\begin{array}{l}{-1-a≤0}\\{a+1≥0}\end{array}\right.$,解得a≥-1.
(II)由(I)可知:a≥-1,因此$\left\{\begin{array}{l}{1-a≥0}\\{f(1)=\frac{1}{2}}\end{array}\right.$,或$\left\{\begin{array}{l}{1-a<0}\\{f(2)=\frac{1}{2}}\end{array}\right.$,
解得a=$\frac{1}{2}$.
点评 本题考查了分段函数的性质、不等式的解法,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,-1,0,1,2} | B. | [-2,2] | C. | [0,1] | D. | {0,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 5 | C. | $\sqrt{13}$ | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com