精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-kx+1(k∈R)
(Ⅰ)当k=1时,求函数f(x)的单调区间;
(Ⅱ)若f(x)≤0恒成立,试确定实数k的取值范围;
(Ⅲ)证明:
ln2
3
+
ln3
4
+
ln4
5
+…+
lnn
n+1
n(n-1)
4
(n∈N*且n>1)
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:导数的综合应用
分析:(Ⅰ)由函数f(x)的定义域为(0,+∞),f′(x)=
1
x
-1
.能求出函数f(x)的单调区间.
(Ⅱ)由(1)知k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1-k>0,f(x)≤0不成立,故k>0,又由(1)知f(x)的最大值为f(
1
k
),由此能确定实数k的取值范围.
(Ⅲ)由(2)知,当k=1时,有f(x)≤0在(0,+∞)恒成立,且f(x)在(1,+∞)上是减函数,f(1)=0,即lnx<x-1在x∈[2,+∞)上恒成立,由此能够证明
ln2
3
+
ln3
4
+
ln4
5
+…+
lnn
n+1
n(n-1)
4
(n∈N*且n>1)
解答: 解:(Ⅰ)易知f(x)的定义域为(0,+∞),
又f′(x)=
1
x
-1

当0<x<1时,f′(x)>0;
当x>1时,f′(x)<0
∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数.

(Ⅱ)当k≤0时,f(1)=1-k>0,不成立,
故只考虑k>0的情况
又f′(x)=
1
x
-k

当k>0时,当0<x<
1
k
时,f′(x)>0;
x>
1
k
时,f′(x)<0
(0,
1
k
)
上是增函数,在(
1
k
,+∞)
时减函数,
此时f(x)max=f(
1
k
)=-lnk

要使f(x)≤0恒成立,只要-lnk≤0 即可
解得:k≥1.

(Ⅲ)当k=1时,
有f(x)≤0在(0,+∞)恒成立,
且f(x)在(1,+∞)上是减函数,f(1)=0,
即lnx<x-1在x∈(1,+∞)上恒成立,
令x=n2,则lnn2<n2-1,
即2lnn<(n-1)(n+1),
lnn
n+1
n-1
2
(n∈N*且n>1)
ln2
3
+
ln3
4
+
ln4
5
+…+
lnn
n+1
1
2
+
2
2
+
3
2
+…+
n-1
2
=
n(n-1)
4

即:
ln2
3
+
ln3
4
+
ln4
5
+…+
lnn
n+1
n(n-1)
4
(n∈N*且n>1)成立.
点评:本题考查函数单调区间的求法,确定实数的取值范围,不等式的证明.考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=3cos2x-4cosx+1,(x∈R)的值域为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在平面内放置的边长为1的正三角形PAB沿x轴滚动,设顶点P(x,y)的轨迹方程是y=f(x),则f(x)的最小正周期为
 
;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

把函数y=sinx(x∈R)的图象上所有点向左平行移动
π
3
个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数是(  )
A、y=sin(
1
2
x-
π
3
),x∈R
B、y=sin(
1
2
x+
π
3
),x∈R
C、y=sin(2x-
π
3
),x∈R
D、y=sin(2x+
π
3
),x∈R

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A1,A2,…,A16,图2是茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是(  )
A、6B、10C、91D、92

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题说法错误的是(  )
A、若“p∧q”为真命题,则p,q均为真命题
B、若命题p:?x∈R,x2≥0,则¬p:?x∈R,x2<0
C、“x>2”是“x≥0”的充分不必要条件
D、“x=
π
6
”是“sinx=
1
2
”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项an=
n-5.8
n-6.1
,若数列{an}的最大项为aM则M=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点O为坐标原点,点A(1,0,0)、点B(1,1,0),则下列各向量中是平面AOB的一个法向量的是(  )
A、(1,1,1)
B、(1,0,1)
C、(0,1,1)
D、(0,0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设扇形的周长为8cm,面积为4cm2,则扇形的圆心角是(  )rad.
A、1B、2C、πD、1或2

查看答案和解析>>

同步练习册答案