精英家教网 > 高中数学 > 题目详情
13.某研究所计划利用宇宙飞船进行新产品搭载实验,计划搭载若干件新产品A,B,该研究所要根据产品的研制成本,产品重量,搭载实验费用和预计收益来决定具体安排,通过调查得到的有关数据如表:
  每件A产品每件B产品 
 研制成本,搭载实验费用之和(万元) 2030 
 产品重量(千克) 10
 预计收益(万元) 80 60
已知研究成本,搭载实验费用之和的最大投入资金为300万元,最大搭载重量为110千克,则通过合理安排这两种产品进行搭载,所获得的最大预计收益是960万元.

分析 设搭载的产品中A有x件,产品B有y件,我们不难得到关于x,y的不等式组,即约束条件和目标函数,然后根据线行规划的方法不难得到结论.

解答 解:设搭载A产品x件,B产品y件,则预计收益z=80x+60y,由题意知,$\left\{\begin{array}{l}{20x+30y≤300}\\{10x+5y≤110}\\{x∈N,y∈N}\end{array}\right.$.
作出可行域如图所示.

作出直线l:80x+60y=0并平移,由图形知,当直线经过点M时,z取到最大值.
由$\left\{\begin{array}{l}{20x+30y=300}\\{10x+5y=110}\end{array}\right.$解得M(9,4).
所以zmax=80×9+60×4=960(万元),所以搭载9件A产品,4件B产品,才能使总预计收益达到最大,最大预计收益为960万元.
故答案为:960.

点评 用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知圆C1:(x+2)2+(y-2)2=4和圆C2:(x+1)2+(y-4)2=4.
(1)判断两圆的位置关系,并说明理由;
(2)若直线l与圆C1,C2都相切,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,角A的平分线为AD,D在边BC上,AB=$\sqrt{3}$,AD=$\sqrt{2}$,B=45°,则A=30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图),再将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义在R上的函数f(x),对任意的实数x,均有f(x+3)≤f(x)+3,f(x+2)≥f(x)+2且f(1)=2,则f(2015)的值为2016.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|a-2<x<a+2},B={x|x2-(a+2)x+2a=0},a∈R.
(Ⅰ)若a=0,求A∪B;
(Ⅱ)若(∁RA)∩B≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若数列{an}满足a1=18,an+1=an-3,则数列{an}的前n项和数值最大时,n的值为(  )
A.6B.7或8C.6或7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=cosx(sinx-$\sqrt{3}$cosx)+$\frac{\sqrt{3}}{2}$,x∈R.
(Ⅰ)求f(x)的最小正周期和单调递增区间;
(Ⅱ)若函数g(x)=f(x+a)为偶函数,求|a|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:?x0>0,x02-x0-2=0,则¬p为(  )
A.?x0≤0,x02-x0-2=0B.?x0>0,x02-x0-2=0
C.?x≤0,x2-x-2≠0D.?x>0,x2-x-2≠0

查看答案和解析>>

同步练习册答案