精英家教网 > 高中数学 > 题目详情
在抛物线y=4x2上有一动点A,试求该点到直线y=4x-5的距离的最小值,并求出此时点A的坐标.
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:对y=4x2求导可求与直线y=4x-5平行且与抛物线y=4x2相切的切点,然后利用点到直线的距离公式可得所求的最小距离d.
解答: 解:对y=4x2求导可得y′=8x
令y′=8x=4可得x=
1
2

∴与直线y=4x-5平行且与抛物线y=4x2相切的切点A(
1
2
,1),
由点到直线的距离公式可得所求的最小距离d=
|2-1-5|
17
=
4
17
17
点评:本题考查直线的抛物线的位置关系的应用,解题时要注意公式的灵活运用,抛物线的基本性质和点到线的距离公式的应用,考查综合运用能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记函数f(x)=
3+x
-
-x-1
的定义域为集合M,函数g(x)=x2-4x+3的值域为集合N,求:
(1)M,N;
(2)M∩N,M∪N.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,多面体ABCC1A1B1中,四边形AA1C1C是正方形,四边形BCC1B1是直角梯形,CC1⊥BC且BC∥B1C1.△ACB、△A1C1B1都是等腰直角三角形,A、B1分别为直角顶点,M是B1B上的点,BM=2MB1
(1)证明CM⊥平面A1B1B;
(2)求二面角A-A1M-B的余弦值;
(3)当AA1=1时,求多面体ABCC1A1B1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

2013年我国汽车拥有量已超过2亿(目前只有中国和美国超过2亿),为了控制汽车尾气对环境的污染,国家鼓励和补贴购买小排量汽车的消费者,同时在部分地区采取对新车限量上号.某市采取对新车限量上号政策,已知2013年年初汽车拥有量为x1(x1=100万辆),第n年(2013年为第1年,2014年为第2年,依此类推)年初的拥有量记为xn,该年的增长量yn和xn与1-
xn
m
的乘积成正比,比例系数为λ(0<λ<1),其中m=200万.
(1)证明:yn≤50λ;
(2)用xn表示xn+1;并说明该市汽车总拥有量是否能控制在200万辆内.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△AOB中,∠OAB=
π
6
,斜边AB=4,Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且∠BOC=90°,动点D在斜边AB上.
(1)求证:平面COD⊥平面AOB;
(2)当∠CDO最大时求三棱锥VA-CDO的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a4=-15,公差d=3,求数列an的前n项和为Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=log2(x2-2x)
(1)求该函数的定义域;
(2)求该函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

太阳岛公园引进了两种植物品种甲与乙,株数分别为18与12,这30株植物的株高编写成茎叶图如图(单位:cm):若这两种植物株高在185cm以上(包括185cm)定义为“优秀品种”,株高在185cm以下(不包括185cm)定义为“非优秀品种”.
(Ⅰ)求乙品种的中位数;
(II)在以上30株植物中,如果用分层抽样的方法从“优秀品种”和“非优秀品种”中抽取5株,再从这5株中选2株,那么至少有一株是“优秀品种”的概率是多少?
(Ⅲ)若从所有“优秀品种”中选3株,用X表示3株中含甲类“优秀品种”的株数,试写出X的分布列,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的外接圆半径为2,则
a+c
sinA+sinC
=
 

查看答案和解析>>

同步练习册答案