精英家教网 > 高中数学 > 题目详情
已知
a
=(2,-1,3),
b
=(-1,4,-2),
c
=(3,2,λ),若
a
b
c
三向量共面,则实数λ等于(  )
A.2B.3C.4D.5
a
b
不共线,
∴可取作此平面的一个基向量.
a
b
c
三向量共面,∴存在实数λ1,λ2使得
c
=λ1
a
+λ2
b

3=2λ1-λ2
2=-λ1+4λ2
λ=3λ1-2λ2

解得
λ1=2
λ2=1
λ=4

故选:C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在正2006边形中,与所有边均不平行的对角线的条数为(    )
A.2006B.C.D..

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如果两个相交平面都垂直于第三个平面,那么它们的交线也垂直于这个平面。
已知:β⊥α,γ⊥α,βγ=a
求证:a⊥α

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直棱柱(侧棱垂直于底面的棱柱)ABC-A1B1C1,在底面ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M,N分别为A1B1,A1A的中点.
(1)求cos<
BA1
CB1
的值;
(2)求证:BN⊥平面C1MN.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图梯形ABCD,ADBC,∠A=90°,过点C作CEAB,AD=2BC,AB=BC,,现将梯形沿CE折成直二面角D-EC-AB.
(1)求直线BD与平面ABCE所成角的正切值;
(2)设线段AB的中点为P,在直线DE上是否存在一点M,使得PM面BCD?若存在,请指出点M的位置,并证明你的结论;若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是
3
,D是AC的中点.
(Ⅰ)求证:B1C平面A1BD;
(Ⅱ)求二面角A1-BD-A的大小;
(Ⅲ)求点A到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为1的正方体A1B1C1D1-ABCD中,
(1)求直线B1D与平面A1BC1所成的角;
(2)求点A到面A1BC1的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.
(1)求证:BD⊥PC;
(2)设E为PC的中点,点F在线段AB上,若直线EF平面PAD,求AF的长;
(3)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为直线,为平面,给出下列命题:
 ② ③ ④
其中的正确命题序号是:
A ③④              B  ②③      C ①②         D ①②③④

查看答案和解析>>

同步练习册答案