【题目】如图,在三棱锥
中,
,
底面
,
,且
.
![]()
(1)若
为
上一点,且
,证明:平面
平面
.
(2)若
为棱
上一点,且
平面
,求三棱锥
的体积.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(2x﹣a)2+(2﹣x+a)2 , x∈[﹣1,1].
(1)若设t=2x﹣2﹣x , 求出t的取值范围(只需直接写出结果,不需论证过程);并把f(x)表示为t的函数g(t);
(2)求f(x)的最小值;
(3)关于x的方程f(x)=2a2有解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为常数
(1)当
在
处取得极值时,若关于x的方程
在
上恰有两个不相等的实数根,求实数b的取值范围.
(2)若对任意的
,总存在
,使不等式
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=ax3﹣3x+1 对于x∈[﹣1,1]总有f(x)≥0成立,则a 的取值范围为( )
A.[2,+∞)
B.[4,+∞)
C.{4}
D.[2,4]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥S﹣ABC中,∠ABC=90°,SA⊥平面ABC,点A在SB和SC上的射影分别为E、D. ![]()
(1)求证:DE⊥SC;
(2)若SA=AB=BC=1,求直线AD与平面ABC所成角的余弦值. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com