精英家教网 > 高中数学 > 题目详情

【题目】对于任意实数x,函数f(x)=(5﹣a)x2﹣6x+a+5恒为正值,求a的取值范围.

【答案】解:由函数f(x)=(5﹣a)x2﹣6x+a+5恒为正值,
若5﹣a=0,即a=5时,不等式等价为﹣6x+10>0,此时不满足条件.
∴a≠5,
要使函数f(x)=(5﹣a)x2﹣6x+a+5恒为正值,

解得﹣4<a<4,
∴a的取值范围是﹣4<a<4
【解析】函数f(x)=(5﹣a)x2﹣6x+a+5恒为正值,可转化为5﹣a>0,且△<0,解不等式组可得答案.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在Rt△AOB中,∠OAB= ,斜边AB=4.Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B﹣AO﹣C是直二面角,动点D在斜边AB上.
(Ⅰ)求证:平面COD⊥平面AOB;
(Ⅱ)当VADOC:VABOC=1:2时,求CD与平面AOB所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论上的单调性;

(2)是否存在实数,使得上的最大值为,若存在,求满足条件的的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 底面 ,且.

(1)若上一点,且,证明:平面平面.

(2)若为棱上一点,且平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知随机变量X服从正态分布N(μ,σ2),且P(μ﹣2σ<X<μ+2σ)=0.954 4,P(μ﹣σ<X<μ+σ)=0.6826.若μ=4,σ=1,则P(5<X<6)=(
A.0.1359
B.0.1358
C.0.2718
D.0.2716

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(﹣1,1),且同时满足下列条件:f(1﹣a)+f(1﹣a2)<0.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为,其中为参数, ,再以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,其中 ,直线与曲线交于两点.

(1)求的值;

(2)已知点,且,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC= ,O,M分别为AB,VA的中点.

(1)求证:VB∥平面MOC.
(2)求证:平面MOC⊥平面VAB.
(3)求二面角C﹣VB﹣A的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有4名男生,3名女生排成一排:
(1)从中选出3人排成一排,有多少种排法?
(2)若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法?
(3)要求女生必须站在一起,则有多少种不同的排法?
(4)若3名女生互不相邻,则有多少种不同的排法?

查看答案和解析>>

同步练习册答案