【题目】已知方程x2+y2+4x﹣2y﹣4=0,则x2+y2的最大值是( )
A.![]()
B.![]()
C.14﹣ ![]()
D.14+ ![]()
【答案】D
【解析】解:由方程x2+y2+4x﹣2y﹣4=0得到圆心为(﹣2,1),半径为3,设圆上一点为(x,y)
圆心到原点的距离是
=
圆上的点到原点的最大距离是
+3
故x2+y2的最大值是为(
+3)2=14+
故选D
【考点精析】通过灵活运用圆的一般方程,掌握圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显即可以解答此题.
科目:高中数学 来源: 题型:
【题目】若数列{an}是等差数列,首项a1>0,a2003+a2004>0,a2003 . a2004<0,则使前n项和Sn>0成立的最大自然数n是( )
A.4005
B.4006
C.4007
D.4008
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的左、右顶点分别为
,上、下顶点分别为
,两个焦点分别为
,
,四边形
的面积是四边形
的面积的2倍.
![]()
(1)求椭圆
的方程;
(2)过椭圆
的右焦点且垂直于
轴的直线交椭圆
于
两点,
是椭圆
上位于直线
两侧的两点.若
,求证:直线
的斜率
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线l的方程是x+my+2
=0,圆O的方程是x2+y2=r2(r>0).
(1)当m取一切实数时,直线l与圆O都有公共点,求r的取值范围;
(2)r=5时,求直线l被圆O截得的弦长的取值范围;
(3)当r=1时,设圆O与x轴相交于P,Q两点,M是圆O上异于P,Q的任意一点,直线PM交直线l′:x=3于点P′,直线QM交直线l′于点Q′.求证:以P′Q′为直径的圆C总经过定点,并求出定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左,右焦点分别为
.点
在椭圆
上,直线
过坐标原点
,若
,
.
(1)求椭圆
的方程;
(2) 设椭圆在点
处的切线记为直线
,点
在
上的射影分别为
,过
作
的垂线交
轴于点
,试问
是否为定值?若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=
b.
(Ⅰ)求角A的大小;
(Ⅱ)若a=6,b+c=8,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D. ![]()
(1)求证:BD⊥A1C;
(2)若E在棱BC1上,且满足DE∥面ABC,求三棱锥E﹣ACC1的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com