精英家教网 > 高中数学 > 题目详情

【题目】已知定义在上的可导函数满足,不等式的解集为,则=

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】根据题意,设g(x)=f(x)﹣(x3﹣x),

则其导数g′(x)=f′(x)﹣(3x2﹣1),

又由f(x)满足f'(x)3x2﹣1,则有g′(x)=f′(x)﹣(3x2﹣1)0,

g(x)在R上为减函数,

x3﹣x+1f(x)x3﹣x+21f(x)﹣(x3﹣x)21g(x)2,

若不等式x3﹣x+1f(x)x3﹣x+2的解集为{x|﹣1x1}

则有g(﹣1)=2,g(1)=1,

即有g(﹣1)=f(﹣1)﹣[(﹣1)3﹣(﹣1)]=2,f(﹣1)=2,

g(1)=f(1)﹣[(1)3﹣(1)]=1,f(1)=1,

f(﹣1)+f(1)=2+1=3;

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆C: + =1(a>b>0)的离心率e= ,且点P(2,1)在椭圆C上. (Ⅰ)求椭圆C的方程;
(Ⅱ)若点A、B都在椭圆C上,且AB中点M在线段OP(不包括端点)上.求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C的参数方程为 ,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为 ,A,B两点的极坐标分别为
(1)求圆C的普通方程和直线l的直角坐标方程;
(2)点P是圆C上任一点,求△PAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线y2=4x的准线与x轴交于A点,焦点是F,P是位于x轴上方的抛物线上的任意一点,令m= ,当m取得最小值时,PA的斜率是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1).

(1)求a,b的值;

(2)求f(log2x)的最小值及相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为办好省运会,计划招募各类志愿者1.2万人.为做好宣传工作,招募小组对15-40岁的人群随机抽取了100人,回答省运会的有关知识,根据统计结果制作了如下的统计图表1、表2

I)分别求出表2中的ax的值;

II)若在第234组回答完全正确的人中,用分层抽样的方法抽取6人,则各组应分别抽取多少人?

III)在(II)的前提下,招募小组决定在所抽取的6人中,随机抽取2人颁发幸运奖,求获奖的2人均来自第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(2,-1)

(1)求过P点且与原点距离为2的直线l的方程;

(2)求过P点且与原点距离最大的直线l的方程最大距离是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列结论:

(1)若对任意,且,都有,则为R上的减函数;

(2)若为R上的偶函数,且在内是减函数, (-2)=0,则>0解集为(-2,2);

(3)若为R上的奇函数,则也是R上的奇函数;

(4)t为常数,若对任意的,都有关于对称。

其中所有正确的结论序号为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是抛物线上两点,且两点横坐标之和为3.

(1)求直线的斜率;

(2)若直线,直线与抛物线相切于点,且,求方程.

查看答案和解析>>

同步练习册答案