精英家教网 > 高中数学 > 题目详情
16.已知a=$\frac{1}{2}$${∫}_{1}^{2}$$\frac{1}{x}$dx,b=$\frac{1}{3}$${∫}_{1}^{3}$$\frac{1}{x}$dx,c=$\frac{1}{5}$${∫}_{1}^{5}$$\frac{1}{x}$dx,则a,b,c的大小关系为c<a<b.

分析 求定积分可得a=$\frac{ln2}{2}$,b=$\frac{ln3}{3}$,c=$\frac{ln5}{5}$,作差由对数的性质可得.

解答 解:计算可得a=$\frac{1}{2}$${∫}_{1}^{2}$$\frac{1}{x}$dx=$\frac{1}{2}$lnx${|}_{1}^{2}$=$\frac{1}{2}$(ln2-ln1)=$\frac{ln2}{2}$;
b=$\frac{1}{3}$${∫}_{1}^{3}$$\frac{1}{x}$dx=$\frac{1}{3}$lnx${|}_{1}^{3}$=$\frac{1}{3}$(ln3-ln1)=$\frac{ln3}{3}$;
c=$\frac{1}{5}$${∫}_{1}^{5}$$\frac{1}{x}$dx=$\frac{1}{5}$lnx${|}_{1}^{5}$=$\frac{1}{3}$(ln5-ln1)=$\frac{ln5}{5}$;
作差可得$\frac{ln2}{2}$-$\frac{ln3}{3}$=$\frac{3ln2-2ln3}{6}$=$\frac{1}{6}$(ln8-ln9)<0,∴$\frac{ln2}{2}$<$\frac{ln3}{3}$,
同理由$\frac{ln5}{5}$-$\frac{ln2}{2}$=$\frac{1}{10}$(2ln5-5ln2)=$\frac{1}{10}$(ln25-ln32)<0可得$\frac{ln5}{5}$<$\frac{ln2}{2}$,
∴$\frac{ln5}{5}$<$\frac{ln2}{2}$<$\frac{ln3}{3}$,即c<a<b
故答案为:c<a<b

点评 本题考查定积分的计算,涉及对数的运算和作差法比较大小,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若抛物线x2=ay的焦点坐标为(0,2),则实数a的值为(  )
A.-8B.-4C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.抛物线y2=12x的准线方程为x=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点M(2,2)在抛物线C:y2=2px(p>0)上,则点M到其准线的距离为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=sinωx(ω>0)在区间[$-\frac{π}{3},\frac{π}{4}$]上的最小值是-1,则ω的最小值为(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知全集U=R,集合A={x|x2-3x<0},B={x|x>1},则A∩B={x|1<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知tanα=2,则tan2α的值为-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点P(1,$\sqrt{2}$)是角α终边上一点,则cos(30°-α)=$\frac{1}{2}$+$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.用2、3、4、5、6这5个数作为基本元素,构造以下两类基本问题:
(1)从上面两个数中,每次取出2个不同数字的组合问题;
(2)从上面两个数中,每次取出2个不同数字的排列问题.

查看答案和解析>>

同步练习册答案