精英家教网 > 高中数学 > 题目详情
14.已知a∈R,函数f1(x)=x2,f2(x)=aln(x+2).
(Ⅰ)令f(x)=$\left\{\begin{array}{l}{{f}_{1}(x),x≤0}\\{{f}_{2}(x),x>0}\end{array}\right.$,若函数f(x)的图象上存在两点A、B满足OA⊥OB(O为坐标原点),且线段AB的中点在y轴上.求实数a的取值范围;
(Ⅱ)若函数g(x)=f1(x)+f2(x)存在两个极值点x1、x2,求证:g(x1)+g(x2)>2.

分析 (Ⅰ)不妨设A(t,aln(t+2)),B(-t,t2),利用OA⊥OB,再分离参数,即可求a的取值集合;
(Ⅱ)函数g(x)=f1(x)+f2(x)存在两个极值点x1、x2,g′(x)=0,即2x2+4x+a=0在(-2,+∞)上存在两个不等的实根,可得0<a<2,x1+x2=-2,x1x2=$\frac{a}{2}$,表示出g(x1)+g(x2),确定其单调性,即可证明g(x1)+g(x2)>2.

解答 解:(Ⅰ)由题意,不妨设A(t,aln(t+2)),B(-t,t2)(t>0)
∴OA⊥OB,
∴-t2+at2ln(t+2)=0,
∴a=$\frac{1}{ln(t+2)}$,
∵ln(t+2)∈(ln2,+∞),
∴a的取值集合为(0,$\frac{1}{ln2}$);
(Ⅱ)g(x)=f1(x)+f2(x)=x2+aln(x+2),
∴g′(x)=$\frac{{2x}^{2}+4x+a}{x+2}$,
∵函数g(x)存在两个极值点x1、x2
∴g′(x)=0,即2x2+4x+a=0在(-2,+∞)上存在两个不等的实根,
令p(x)=2x2+4x+a,
∴△=16-8a>0且p(-2)>0,
∴0<a<2,
∵x1+x2=-2,x1x2=$\frac{a}{2}$,
∴g(x1)+g(x2)=x12+aln(x1+2)+x22+aln(x2+2)
=(x1+x22-2x1x2+aln[x1x2+2(x1+x2)+4]=aln$\frac{a}{2}$-a+4
令q(x)=xln$\frac{x}{2}$-x+4,x∈(0,2),
∴q′(x)=ln$\frac{x}{2}$<0,
∴q(x)在(0,2)上单调递减,
∴2<aln$\frac{a}{2}$-a+4,
∴g(x1)+g(x2)>2.

点评 本题考查导数知识的运用,考查韦达定理,考查函数的单调性与极值,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.从3男1女共4名学生中选出2人参加学校组织的环保活动,则女生被选中的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,PA⊥平面ABCD,AB⊥AD,AD∥BC,PA=AB=BC,AD=2AB,点M,N分别在PB,PC上,且MN∥BC.
(Ⅰ)证明:平面AMN⊥平面PBA;
(Ⅱ)若M为PB的中点,求二面角M-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x3+ax2-a2x+3.
(Ⅰ)若a=2,求f(x)在[-1,2]上的最值;
(Ⅱ)若f(x)在(-$\frac{1}{2}$,1)上是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.用1,2,3,4,5,6这六个数字组成没有重复数字的六位数,其中1,3,5三个数字互不相邻的六位数有144个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.用数学归纳法证明$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}}$≥$\frac{n}{2}$(n∈N*),从“n=k(k∈N*)”到“n=k+1”时,左边需增加的代数式为(  )
A.$\frac{1}{{2}^{k}+1}$B.$\frac{1}{{2}^{k+1}}$
C.$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+2}$+…+$\frac{1}{{2}^{k+1}}$D.$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.为了得到函数y=cos($\frac{1}{2}$x+$\frac{π}{3}$)的图象,只要把y=cos$\frac{1}{2}x$的图象上所有的点(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{2π}{3}$个单位长度D.向右平移$\frac{2π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个棱长为2的正方体,它的顶点都在球面上,这个球的体积是(  )
A.B.2$\sqrt{3}$πC.4$\sqrt{3}$πD.12π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列四个函数中,既是定义域上的奇函数又在区间(0,1)内单调递增的是(  )
A.y=x3B.y=cosxC.y=ln$\frac{1-x}{1+x}$D.y=ex

查看答案和解析>>

同步练习册答案