精英家教网 > 高中数学 > 题目详情
19.用数学归纳法证明$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}}$≥$\frac{n}{2}$(n∈N*),从“n=k(k∈N*)”到“n=k+1”时,左边需增加的代数式为(  )
A.$\frac{1}{{2}^{k}+1}$B.$\frac{1}{{2}^{k+1}}$
C.$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+2}$+…+$\frac{1}{{2}^{k+1}}$D.$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$

分析 求出当n=k时,左边的代数式,当n=k+1时,左边的代数式,相减可得结果.

解答 解:当n=k时,左边的代数式为$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{K}}$
 当n=k+1时,左边的代数式为$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{K}}$+$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+2}$+…+$\frac{1}{{2}^{k+1}}$,
故用n=k+1时左边的代数式减去n=k时左边的代数式的结果为$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+2}$+…+$\frac{1}{{2}^{k+1}}$,
故选:C.

点评 本题考查用数学归纳法证明不等式,注意式子的结构特征,以及从n=k到n=k+1项的变化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.从某校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组,第一组[155,160),第二组[160,165),…,第八组[190.195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组人数为4.
(1)求第七组的频数.
(2)估计该校的800名男生身高的中位数在上述八组中的哪一组以及身高在180cm以上(含180cm)的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示,则该几何体的体积等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.由曲线y=x,y=x3围成的封闭图形的面积为(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a∈R,函数f1(x)=x2,f2(x)=aln(x+2).
(Ⅰ)令f(x)=$\left\{\begin{array}{l}{{f}_{1}(x),x≤0}\\{{f}_{2}(x),x>0}\end{array}\right.$,若函数f(x)的图象上存在两点A、B满足OA⊥OB(O为坐标原点),且线段AB的中点在y轴上.求实数a的取值范围;
(Ⅱ)若函数g(x)=f1(x)+f2(x)存在两个极值点x1、x2,求证:g(x1)+g(x2)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{lnx}{x}$.
(Ⅰ)求f(x)的极值;
(Ⅱ)试比较20162017与20172016的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为$\stackrel{∧}{y}$=0.85x-85.71,则下列结论中不正确的是(  )
A.若该大学某女生身高为170cm,则她的体重必为58.79kg
B.y与x具有正的线性相关关系
C.回归直线过样本点的中心($\overline x$,$\overline y$)
D.身高x为解释变量,体重y为预报变量

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若样本点为(21,2.1)、(23,2.3)、(25,2.8)、(27,3.2)、(29,4.1),则样本点的中心为(25,2.9).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.用数学归纳法证明等式1+2+3+…+2n=$\frac{{{2^n}({{2^n}+1})}}{2}$(n≥2,n∈N*)的过程中,第一步归纳基础,等式左边的式子是(  )
A.1+2B.1+2+3+4C.1+2+3D.1+2+3+4+5+6+7+8

查看答案和解析>>

同步练习册答案