【题目】对于给定的正整数k,若数列lanl 满足
=2kan对任意正整数n(n> k) 总成立,则称数列lanl 是“P(k)数列”.学科@网
(1)证明:等差数列lanl是“P(3)数列”;
若数列lanl既是“P(2)数列”,又是“P(3)数列”,证明:lanl是等差数列.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数).
(I)写出直线的一般方程与曲线的直角坐标方程,并判断它们的位置关系;
(II)将曲线向左平移个单位长度,向上平移个单位长度,得到曲线,设曲线经过伸缩变换得到曲线,设曲线上任一点为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《孙子算经》是中国古代重要的数学著作,约成书于四、五世纪,也就是大约一千五百年前,传本的《孙子算经》共三卷,卷中有一问题:“今有方物一束,外周一匝有三十二枚,问积几何?”该著作中提出了一种解决问题的方法:“重置二位,左位减八,余加右位,至尽虚加一,即得.”通过对该题的研究发现,若一束方物外周一匝的枚数是8的整数倍时,均可采用此方法求解,如图,是解决这类问题的程序框图,若输入,则输出的结果为( )
A. 120 B. 121 C. 112 D. 113
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足:a4=7,a10=19,其前n项和为Sn .
(1)求数列{an}的通项公式an及Sn;
(2)若等比数列{bn}的前n项和为Tn , 且b1=2,b4=S4 , 求Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上,且AD=4DC.
(Ⅰ)求BD的长;
(Ⅱ)求sin∠CBD的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面内给定三个向量 =(3,2), =(﹣1,2), =(4,1).回答下列问题:
(1)若( +k )∥(2 ﹣ ),求实数k;
(2)设 =(x,y)满足( ﹣ )∥( + )且| ﹣ |=1,求 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班同学利用寒假进行社会实践活动,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳族人数 | 占本组的频率 |
第一组 | [25,30) | 120 | 0.6 |
第二组 | [30,35) | 195 | p |
第三组 | [35,40) | 100 | 0.5 |
第四组 | [40,45) | a | 0.4 |
第五组 | [45,50) | 30 | 0.3 |
第六组 | [50,55) | 15 | 0.3 |
(1)补全频率分布直方图并求n、a、p的值;
(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等边三角形的边长为4,四边形为正方形,平面平面, , , , 分别是线段, , , 上的点.
(Ⅰ)如图①,若为线段的中点, ,证明: 平面;
(Ⅱ)如图②,若, 分别为线段, 的中点, , ,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣4x﹣4y+4=0,点E(3,4).
(1)过点E的直线l与圆交与A,B两点,若AB=2 ,求直线l的方程;
(2)从圆C外一点P(x1 , y1)向该圆引一条切线,切点记为M,O为坐标原点,且满足PM=PO,求使得PM取得最小值时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com