精英家教网 > 高中数学 > 题目详情
直线与椭圆交于两点,已知,若且椭圆的离心率,又椭圆经过点为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点为半焦距),求直线的斜率的值;
(Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(Ⅰ)(Ⅱ)(Ⅲ)三角形的面积为定值。证明见解析
(I)由e和椭圆过点可得到关于a,b的两个方程,从而解出a,b值求出椭圆的方程.
(II) 设的方程为,由已知得:
=0,
然后直线方程与椭圆方程联立消y后得到关于x的一元二次方程,利用韦达定理建立关于k的方程求出k值.
(III)要讨论AB斜率存在与不存在两种情况.研究当AB斜率存在时,由已知,得,又在椭圆上,所以,从而证明出为定值.
解:(Ⅰ)∵  ……2分
   
∴椭圆的方程为……………3分
(Ⅱ)依题意,设的方程为

显然
      ………………5分
由已知得:
 
 
解得            ……………………6分
(Ⅲ)①当直线斜率不存在时,即
由已知,得
在椭圆上,
所以
 ,三角形的面积为定值.………7分
②当直线斜率存在时:设的方程为

必须 即
得到        ………………9分
,∴
代入整理得:              …………………10分
   …………11分
    所以三角形的面积为定值. ……12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如果方程表示焦点在轴上的椭圆,则的取值范围是  (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以椭圆的右焦点为圆心作一个圆,使此圆过椭圆中心并交椭圆于点M,N,
若过椭圆左焦点的直线MF1是圆的切线,则椭圆的离心率为                

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

焦距为,离心率,焦点在轴上的椭圆标准方程是       (   )
               
            

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆为正整数,为常数.曲线在点处的切线方程为.
(Ⅰ)求函数的最大值;
(Ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题10分)选修4—4:坐标系与参数方程设椭圆的普通方程为
(1)设为参数,求椭圆的参数方程;
(2)点是椭圆上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线过双曲线右焦点,交双曲线于两点,
的最小值为2,则其离心率为(  )
A.B.C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆=1的离心率 e =, 则k的值是             

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案