精英家教网 > 高中数学 > 题目详情
求值:(2cos
π
9
+1)?tan
9
-2sin
π
9
考点:三角函数中的恒等变换应用
专题:三角函数的求值
分析:将所求关系式中的“切”化为“弦”,理由三角函数中的恒等变换应用,理由两角差的正弦及灵活的拆分角即可求得答案.
解答: 解:原式=
(2cos
π
9
+1)sin
9
-2sin
π
9
cos
9
cos
9

=
2sin(
9
-
π
9
)+sin
9
cos
9

=
2sin
π
9
+sin
9
cos
9

=
2sin(
π
3
-
9
)+sin
9
cos
9

=
2sin
π
3
cos
9
cos
9
=
3
点评:本题考查三角函数中的恒等变换应用,考查两角差的正弦,考查拆分角的技巧与运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,且a>b,则正确的是(  )
A、sinA>sinB且cosA>cosB
B、sinA<sinB且cosA<cosB
C、sinA>sinB且cosA<cosB
D、sinA<sinB且cosA>cosB

查看答案和解析>>

科目:高中数学 来源: 题型:

一个直径为8cm的大金属球,熔化后铸成若干个直径为2cm的小球,如果不计损耗,可铸成小球的个数为(  )
A、4B、8C、16D、64

查看答案和解析>>

科目:高中数学 来源: 题型:

将6个相同的小球放入3个不同的盒子,要求每个盒子中至少有1个小球,且每个盒子中的小球个数都不同,则不同的放法共有(  )
A、4种B、6种C、8种D、10种

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax,g(x)=lnx,其中a为任意实数
(1)若函数F(x)=f(x)-g(x)有极值1,求a的值;
(2)若函数G(x)=f[sin(1-x)]+g(x)在区间(0,1)为增函数,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等边三角形ABC中,D、E分别是AB、BC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF折起,得到如图乙所示的三棱锥A-BCF.
(1)证明:DE∥平面BCF;
(2)证明:平面DEG∥平面BCF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知S=
12
(12+992)
+
22
(22+982)
+
32
(32+972)
+…+
982
(982+22)
+
992
(992+12)
,求S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的公比q>0,a1=8,数列{bn}满足条件bn=log2an,若数列{bn}的前n项和中S7最大,且S7≠S8
(1)求证:数列{bn}是等差数列,并求出首项b1和公差d的值.
(2)求数列{an}的公比q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)设函数f(x)=
2x+a
x+1
(a≠2).
(1)用反证法证明:函数f(x)不可能为偶函数;
(2)求证:函数f(x)在(-∞,-1)上单调递减的充要条件是a>2.

查看答案和解析>>

同步练习册答案