精英家教网 > 高中数学 > 题目详情
13.将圆x2+y2=1经过伸缩变换$\left\{\begin{array}{l}{x′=4x}\\{y′=3y}\end{array}\right.$后的曲线方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}=1$.

分析 将$\left\{\begin{array}{l}{x′=4x}\\{y′=3y}\end{array}\right.$,整理可知:$\left\{\begin{array}{l}{x=\frac{x′}{4}}\\{y=\frac{y′}{3}}\end{array}\right.$,代入圆方程即可求得曲线方程.

解答 解:由$\left\{\begin{array}{l}{x′=4x}\\{y′=3y}\end{array}\right.$,整理可知:$\left\{\begin{array}{l}{x=\frac{x′}{4}}\\{y=\frac{y′}{3}}\end{array}\right.$,代入圆方程:$\frac{{x′}^{2}}{16}+\frac{{y′}^{2}}{9}=1$,
∴曲线方程:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}=1$,
故答案为:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}=1$.

点评 本题考查曲线方程的变换,考查转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.连续6次射击,把每次命中与否按顺序记录下来.
①可能出现多少种结果?
②恰好命中3次的结果有多少种?
③命中3次,恰好有两次是连续命中的结果有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.数列{an}中,an+1=$\frac{{a}_{n}}{1+3{a}_{n}}$,a1=2,则a3=(  )
A.$\frac{2}{25}$B.$\frac{2}{19}$C.$\frac{2}{13}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知非零向量$\overrightarrow a$,$\overrightarrow b$满足|${\overrightarrow a}$|=1,且($\overrightarrow a$-$\overrightarrow b$)•($\overrightarrow a$+$\overrightarrow b$)=$\frac{3}{4}$.
(1)求|${\overrightarrow b}$|;  
 (2)当$\overrightarrow a$•$\overrightarrow b$=-$\frac{1}{4}$时,求向量$\overrightarrow a$与$\overrightarrow a$+2$\overrightarrow b$的夹角θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i是虚数单位,若z(1+3i)=i,则z的共轭复数的虚部为(  )
A.$\frac{1}{10}$B.-$\frac{1}{10}$C.$\frac{i}{10}$D.-$\frac{i}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.( I)设复数z满足(1+i)z=2,其中i为虚数单位,求复数z.
( II)实数m取何值时,复数z=m2-1+(m2-3m+2)i,
( i)是实数;
( ii)是纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$x2-mln$\sqrt{1+2x}$+mx-2m,m<0.
(1)当m=-1时,求函数y=f(x)-$\frac{x}{3}$的单调区间;
(2)已知m≤-$\frac{e}{2}$(其中e是自然对数的底数),若存在实数x0∈(-$\frac{1}{2}$,$\frac{e-1}{2}$],使f(x0)>e+1成立,求m的范围;
(3)证明:$\sum_{k=1}^n{\frac{8k-3}{{3{k^2}}}}$>ln$\frac{(n+1)(n+2)}{2}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=x3-3x-a在(1,2)内有零点,则实数a的取值范围是(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知定义在R上的奇函数f(x),若f(x)的导函数f'(x)满足f'(x)<x2+1,则不等式f(x)<$\frac{1}{3}$x3+x的解集为(0,+∞).

查看答案和解析>>

同步练习册答案