精英家教网 > 高中数学 > 题目详情
4.数列{an}中,an+1=$\frac{{a}_{n}}{1+3{a}_{n}}$,a1=2,则a3=(  )
A.$\frac{2}{25}$B.$\frac{2}{19}$C.$\frac{2}{13}$D.$\frac{2}{7}$

分析 直接利用数列的递推关系式,逐步求解即可.

解答 解:数列{an}中,an+1=$\frac{{a}_{n}}{1+3{a}_{n}}$,a1=2,
可得a2=$\frac{{a}_{1}}{1+3{a}_{1}}$=$\frac{2}{1+6}$=$\frac{2}{7}$,
a3=$\frac{{a}_{2}}{1+3{a}_{2}}$=$\frac{\frac{2}{7}}{1+3×\frac{2}{7}}$=$\frac{2}{13}$.
故选:C.

点评 本题考查数列的递推关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xoy中,直线l经过点P(7,0),其倾斜角为α,以原点o为极点,以x轴非负半轴为极轴,与直角坐标系xoy取相同的长度单位,建立极坐标系,设曲线C的极坐标方程为ρ2-6ρcosθ+5=0.
(1)若直线l与曲线C有公共点,求α的取值范围:
(2)设M(x,y)为曲线C上任意一点,求$2x+\frac{3}{2}y$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=t-2}\\{y=t+2}\end{array}}$(t为参数),曲线C的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}(α为参数)}$.
(1)设点Q是曲线C上的一个动点,求它到直线l的距离的最值.
(2)请问是否存在直线m,m∥l且m与曲线C的交点A、B满足S△AOB=$\frac{3}{4}$;若存在,请求出满足题意的所有直线方程,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若对x>0,y>0,有(x+2y)($\frac{2}{x}$+$\frac{1}{y}$)≥m恒成立,则m的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{{\sqrt{2}}}{2}$,其左、右顶点分别为点A、B,且点A关于直线y=x对称的点在直线y=3x-2上,点M在椭圆E上,且不与点A、B重合.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)已知点N在圆O:x2+y2=b2上,MN⊥y轴,若直线MA、MB与y轴的交点分别为C、D,求证:sin∠CND为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知正方体的棱长为4,则它的内切球的表面积为(  )
A.B.C.D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.极坐标方程ρ=sinθ+cosθ表示的曲线是(  )
A.直线B.C.椭圆D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.将圆x2+y2=1经过伸缩变换$\left\{\begin{array}{l}{x′=4x}\\{y′=3y}\end{array}\right.$后的曲线方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果${(x+\frac{1}{x})^{2n}}$展开式中,第四项与第六项的系数相等.则其展开式中的常数项的值是(  )
A.70B.80C.252D.126

查看答案和解析>>

同步练习册答案