精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0),f(x)在区间(0,2]上只有一个最大值1和一个最小值-1,则实数ω的取值范围为(  )
A.[$\frac{7π}{12}$,$\frac{13π}{12}$)B.[$\frac{π}{2}$,π)C.[$\frac{π}{6}$,$\frac{π}{2}$)D.[$\frac{π}{6}$,$\frac{π}{3}$]

分析 根据函数f(x)的解析式,利用x的取值范围与三角函数图象与性质,列出不等式求出ω的取值范围.

解答 解:函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0),
当x∈(0,2]时,$\frac{π}{3}$<ωx+$\frac{π}{3}$≤2ω+$\frac{π}{3}$;
又函数f(x)在区间(0,2]上只有一个最大值1和一个最小值-1,
∴$\frac{3π}{2}$≤2ω+$\frac{π}{3}$<$\frac{5π}{2}$,
解得$\frac{7π}{12}$≤ω<$\frac{13π}{12}$,
∴实数ω的取值范围是[$\frac{7π}{12}$,$\frac{13π}{12}$).
故选:A.

点评 本题考查了正弦型函数的图象与性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,以原点为O极点,以x轴正半轴为极轴,圆C的极坐标方程为ρ=4$\sqrt{2}cos(θ+\frac{π}{4})$.
(1)将圆C的极坐标方程化为直角坐标方程;
(2)过点P(2,0)作斜率为1直线l与圆C交于A,B两点,试求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和Sn=n2,数列{bn}满足b1=a1,bn+1(an+1-an)=bn
(1)求数列{an}和{bn}的通项公式;
(2)求数列$\left\{{\frac{a_n}{b_n}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图所示的程序框图,如果输入s=0.1,则输出的n=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某单位生产A、B两种产品,需要资金和场地,生产每吨A种产品和生产每吨B种产品所需资金和场地的数据如表所示:
资源
产品
资金(万元)场地(平方米)
A2100
B350
现有资金12万元,场地400平方米,生产每吨A种产品可获利润3万元;生产每吨B种产品可获利润2万元,分别用x,y表示计划生产A、B两种产品的吨数.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问A、B两种产品应各生产多少吨,才能产生最大的利润?并求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.《九章算术》“竹九节”问题:现有一根九节的竹子,自上而下各节的容积成等差数列,上面3节的容积共9升,下面3节的容积共45升,则第五节的容积为(  )
A.7升B.8升C.9升D.11升

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a∈{-2,0,1,3},b∈{1,2},则曲线ax2+by2=1为椭圆的概率是(  )
A.$\frac{3}{7}$B.$\frac{4}{7}$C.$\frac{1}{2}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知曲线y=lnx的切线过原点,则此切线的斜率是$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知ω>0,a>0,f(x)=asinωx+$\sqrt{3}$acosωx,g(x)=2cos(ax+$\frac{π}{6}$),h(x)=$\frac{f(x)}{g(x)}$这3个函数在同一直角坐标系中的部分图象如图所示,则函数g(x)+h(x)的图象的一条对称轴方程可以为(  )
A.x=$\frac{π}{6}$B.x=$\frac{13π}{6}$C.x=-$\frac{23π}{12}$D.x=-$\frac{29π}{12}$

查看答案和解析>>

同步练习册答案