精英家教网 > 高中数学 > 题目详情
5.已知a∈{-2,0,1,3},b∈{1,2},则曲线ax2+by2=1为椭圆的概率是(  )
A.$\frac{3}{7}$B.$\frac{4}{7}$C.$\frac{1}{2}$D.$\frac{3}{8}$

分析 基本事件总数n=4×2=8,利用列举法求出曲线ax2+by2=1为椭圆包含的基本事件个数,由此能求出曲线ax2+by2=1为椭圆的概率.

解答 解:∵a∈{-2,0,1,3},b∈{1,2},
∴基本事件总数n=4×2=8,
曲线ax2+by2=1为椭圆包含的基本事件有:(1,2),(3,1),(3,2),
共有3个,
曲线ax2+by2=1为椭圆的概率p=$\frac{3}{8}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.全集U={1,2,3,4,5,6},若M={1,4},N={2,3},则∁U(M∪N)等于(  )
A.{1,2,3,4}B.{3,4}C.{1,6}D.{5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如果$z=\frac{1-ai}{1+ai}$为纯虚数,求实数a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0),f(x)在区间(0,2]上只有一个最大值1和一个最小值-1,则实数ω的取值范围为(  )
A.[$\frac{7π}{12}$,$\frac{13π}{12}$)B.[$\frac{π}{2}$,π)C.[$\frac{π}{6}$,$\frac{π}{2}$)D.[$\frac{π}{6}$,$\frac{π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法中正确的是(  )
A.“a>b”是“log2a>log2b”的充要条件
B.若函数y=sin2x的图象向左平移$\frac{π}{4}$个单位得到的函数图象关于y轴对称
C.命题“在△ABC中,$A>\frac{π}{3}$,则$sinA>\frac{{\sqrt{3}}}{2}$”的逆否命题为真命题
D.若数列{an}的前n项和为${S_n}={2^n}$,则数列{an}是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n=23或24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上.
(I)求证:BC⊥平面ACFE;
(II)当EM为何值时,AM∥平面BDF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=x2+$\frac{a}{x}$(a∈R)在x=1处的切线与直线2x-y+1=0平行,则a=(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线C:y2=2px(p>0)的焦点F与椭圆$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{8}$=$\frac{1}{2}$的一个焦点重合,直线l过点A(4,0)且与抛物线交于P、Q两点.
(1)求p的值;
(2)若$\overrightarrow{FP}$+$\overrightarrow{PQ}$=$\overrightarrow{FR}$,试求动点R的轨迹方程.

查看答案和解析>>

同步练习册答案