精英家教网 > 高中数学 > 题目详情
15.已知抛物线C:y2=2px(p>0)的焦点F与椭圆$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{8}$=$\frac{1}{2}$的一个焦点重合,直线l过点A(4,0)且与抛物线交于P、Q两点.
(1)求p的值;
(2)若$\overrightarrow{FP}$+$\overrightarrow{PQ}$=$\overrightarrow{FR}$,试求动点R的轨迹方程.

分析 (1)把椭圆的方程$\frac{{x}^{2}}{10}+\frac{{y}^{2}}{8}=\frac{1}{2}$化为标准方程,求出其焦点坐标为(±1,0),又抛物线C的焦点与椭圆的一个焦点重合,从而$\frac{p}{2}=1$,由此能求出p.
(2)设R(x,y),P(x1,y1),Q(x2,y2),由$\overrightarrow{FP}+\overrightarrow{FQ}$=$\overrightarrow{FR}$,得x1+x2=x+1,y1+y2=y,从而y(y1-y2)=(y1+y2)(y1-y2)=4(x1-x2),FR的中点坐标为M($\frac{x+1}{2}$,$\frac{y}{2}$),利用kPQ=kMA,能求出动点R的轨迹方程.

解答 解:(1)把椭圆的方程$\frac{{x}^{2}}{10}+\frac{{y}^{2}}{8}=\frac{1}{2}$化为标准方程得$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{4}=1$,
∴c=$\sqrt{5-4}$=1,
∴其焦点坐标为(±1,0),又抛物线C的焦点与椭圆的一个焦点重合,
∴$\frac{p}{2}=1$,解得p=2.
(2)设R(x,y),P(x1,y1),Q(x2,y2),
由$\overrightarrow{FP}+\overrightarrow{FQ}$=$\overrightarrow{FR}$,得(x1-1,y1)+(x2-1,y2)=(x-1,y),
∴x1+x2=x+1,y1+y2=y,
∵${{y}_{1}}^{2}=4{x}_{1},{{y}_{2}}^{2}=4{x}_{2}$,∴y(y1-y2)=(y1+y2)(y1-y2)=4(x1-x2),
又FR的中点坐标为M($\frac{x+1}{2}$,$\frac{y}{2}$),
当x1≠x2时,利用kPQ=kMA,得$\frac{4}{y}=\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=\frac{\frac{y}{2}}{\frac{x+1}{2}-4}$,
整理,得y2=4x-28,
当x1=x2时,R的坐标为(7,0),满足y2=4x-28,
∴动点R的轨迹方程是y2=4x-28.

点评 本题主要考查抛物线、椭圆的概念和性质,直线和椭圆、抛物线的位置关系,直线的性质等知识,意在考查转化和化归思想,数形结合思想和学生的运算求解能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知a∈{-2,0,1,3},b∈{1,2},则曲线ax2+by2=1为椭圆的概率是(  )
A.$\frac{3}{7}$B.$\frac{4}{7}$C.$\frac{1}{2}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,则输出S=(  )
A.4B.log215C.log217D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知ω>0,a>0,f(x)=asinωx+$\sqrt{3}$acosωx,g(x)=2cos(ax+$\frac{π}{6}$),h(x)=$\frac{f(x)}{g(x)}$这3个函数在同一直角坐标系中的部分图象如图所示,则函数g(x)+h(x)的图象的一条对称轴方程可以为(  )
A.x=$\frac{π}{6}$B.x=$\frac{13π}{6}$C.x=-$\frac{23π}{12}$D.x=-$\frac{29π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={-2,-1,0,1,2},B={x|lgx≤0},则A∩B=(  )
A.{1}B.{0,1}C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2lnx+ax-$\frac{4f′(2)}{x}$(a∈R)在x=2处的切线经过点(-4,2ln2)
(1)讨论函数f(x)的单调性
(2)若不等式$\frac{2xlnx}{{1-{x^2}}}>mx-1$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1、F2,以F1F2为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{9}=1$B.$\frac{x^2}{3}-\frac{y^2}{4}=1$C.$\frac{x^2}{9}-\frac{y^2}{16}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.用反证法证明:当m为任何实数时,关于x的方程x2-5x+m=0与2x2+x+6-m=0至少有一个方程有实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数$f(x)={x^3}-\frac{3}{2}{x^2}+5$在区间[-2,2]上的最大值与最小值.

查看答案和解析>>

同步练习册答案