精英家教网 > 高中数学 > 题目详情
7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1、F2,以F1F2为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{9}=1$B.$\frac{x^2}{3}-\frac{y^2}{4}=1$C.$\frac{x^2}{9}-\frac{y^2}{16}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

分析 根据题意,点(3,4)到原点的距离等于半焦距,可得a2+b2=25.由点(3,4)在双曲线的渐近线上,得到$\frac{b}{a}$=$\frac{4}{3}$,两式联解得出a=3且b=4,即可得到所求双曲线的方程.

解答 解:∵点(3,4)在以|F1F2|为直径的圆上,
∴c=5,可得a2+b2=25…①
又∵点(3,4)在双曲线的渐近线y=$\frac{b}{a}$x上,
∴$\frac{b}{a}$=$\frac{4}{3}$…②,
①②联解,得a=3且b=4,
可得双曲线的方程$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1.
故选:C.

点评 本题给出双曲线满足的条件,求双曲线的方程,考查了双曲线的标准方程与简单几何性质,主要是渐近线方程的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上.
(I)求证:BC⊥平面ACFE;
(II)当EM为何值时,AM∥平面BDF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知等差数列{an}的前n项和为Sn,且2(a1+a3+a5)+3(a8+a10)=36,则S11=(  )
A.66B.55C.44D.33

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线C:y2=2px(p>0)的焦点F与椭圆$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{8}$=$\frac{1}{2}$的一个焦点重合,直线l过点A(4,0)且与抛物线交于P、Q两点.
(1)求p的值;
(2)若$\overrightarrow{FP}$+$\overrightarrow{PQ}$=$\overrightarrow{FR}$,试求动点R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知i是虚数单位,(1+2i)z1=-1+3i,${z_2}=1+{({1+i})^{10}}$,z1、z2在复平面上对应的点分别为A、B,则|AB|=(  )
A.31B.33C.$\sqrt{31}$D.$\sqrt{33}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某年级480名学生在一次面米测试中,成绩全部介于13秒和18秒之间,将测试结果分成5组,如图为其频率分布直方图,如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是216.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知矩阵$A=[\begin{array}{l}2\\ 1\end{array}\right.$$\left.\begin{array}{l}1\\ 3\end{array}]$,$B=[\begin{array}{l}1\\ 0\end{array}\right.$$\left.\begin{array}{l}1\\-1\end{array}]$.求矩阵C,使得AC=B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列命题中
①A+B=$\frac{π}{2}$是sinA=cosB成立的充分不必要条件.
②${(\frac{1}{{\sqrt{x}}}-x)^6}$的展开式中的常数项是第4项.
③在数列{an}中,a1=2,Sn是其前n项和且满足Sn+1=$\frac{1}{2}{S_n}$+2,则数列{an}为等比数列.
④设过函数f(x)=x2-x(-1≤x≤1)图象上任意一点的切线的斜率为K,则K的取值范围是(-3,1)
把你认为正确的命题的序号填在横线上①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以下四个命题中是假命题的是(  )
A.“昆虫都是6条腿,竹节虫是昆虫,所以竹节虫有6条腿”此推理属于演绎推理.
B.“在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c则a∥c,将此结论放到空间中也成立”此推理属于合情推理.
C.“a≤0”是“函数f(x)=ax+lnx存在极值”的必要不充分条件.
D.若$x∈(0\;,\;\;\frac{π}{2}]$,则$sinx+\frac{2}{sinx}$的最小值为$2\sqrt{2}$.

查看答案和解析>>

同步练习册答案