精英家教网 > 高中数学 > 题目详情
17.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上.
(I)求证:BC⊥平面ACFE;
(II)当EM为何值时,AM∥平面BDF?证明你的结论.

分析 (Ⅰ)由已知,若证得AC⊥BC,则据面面垂直的性质定理即可.转化成在平面ABCD,能否有AC⊥BC,易证成立.
(Ⅱ)设AC∩BD=N,则面AMF∩平面BDF=FN,只需AM∥FN即可.而CN:NA=1:2.故应有EM:FM=1:2

解答 (Ⅰ)证明:在梯形ABCD中,
∵AD=DC=CB=a,∠ABC=60°        
∴四边形ABCD是等腰梯形,
且∠DCA=∠DAC=30°,∠DCB=120°,
∴∠ACB=90°,∴AC⊥BC,
又∵平面ACF⊥平面ABCD,交线为AC,∴BC⊥平面ACFE.
(Ⅱ)当EM=$\frac{\sqrt{3}}{3}$a时,AM∥平面BDF.
在梯形ABCD中,设AC∩BD=N,连接FN,则CN:NA=1:2.
∵EM=$\frac{\sqrt{3}}{3}$a而EF=AC=$\sqrt{3}$a,∴EM:FM=1:2.∴EM∥CN,EM=CN,
∴四边形ANFM是平行四边形.∴AM∥NF.
又NF?平面BDF,AM?平面BDF.∴AM∥平面BDF.

点评 本题考查线面位置关系及判定,考查空间想象能力,计算能力,转化能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知奇函数f(x)的定义域为R,且f(x+$\frac{7}{2}$)=$\frac{1}{f(x)}$,f(4)>1,f(2012)=$\frac{2a+3}{a-1}$,则实数a的取值范围是-$\frac{2}{3}$<a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某单位生产A、B两种产品,需要资金和场地,生产每吨A种产品和生产每吨B种产品所需资金和场地的数据如表所示:
资源
产品
资金(万元)场地(平方米)
A2100
B350
现有资金12万元,场地400平方米,生产每吨A种产品可获利润3万元;生产每吨B种产品可获利润2万元,分别用x,y表示计划生产A、B两种产品的吨数.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问A、B两种产品应各生产多少吨,才能产生最大的利润?并求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a∈{-2,0,1,3},b∈{1,2},则曲线ax2+by2=1为椭圆的概率是(  )
A.$\frac{3}{7}$B.$\frac{4}{7}$C.$\frac{1}{2}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.一盒有10张奖券,其中2张是有奖的,先由甲后由乙各抽一张,求:
(1)甲中奖的概率.
(2)甲、乙都中奖的概率.
(3)甲、乙至少有一个中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知曲线y=lnx的切线过原点,则此切线的斜率是$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,曲线C:x2=4y与直线y=kx+a(a>0)交与M,N两点.
(1)当k=0时,分别求C在点M和N处的切线方程;
(2)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,则输出S=(  )
A.4B.log215C.log217D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1、F2,以F1F2为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{9}=1$B.$\frac{x^2}{3}-\frac{y^2}{4}=1$C.$\frac{x^2}{9}-\frac{y^2}{16}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

同步练习册答案