【题目】设函数,是定义域为的奇函数.
(1)确定的值;
(2)若,函数,,求的最小值;
(3)若,是否存在正整数,使得对恒成立?若存在,请求出所有的正整数;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知实数a>0,b>0,函数f(x)=|x﹣a|﹣|x+b|的最大值为3.
(I) 求a+b的值;
(Ⅱ)设函数g(x)=﹣x2﹣ax﹣b,若对于x≥a均有g(x)<f(x),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, , (其中是自然对数的底数).
(1)若曲线在点处的切线与直线垂直,求实数的值;
(2)记函数,其中,若函数在内存在两个极值点,求实数的取值范围;
(3)若对任意, ,且,均有成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的数列{an}的前n项和Sn>1,且6Sn=(an+1)(an+2),n∈N* .
(1)求{an}的通项公式;
(2)若数列{bn}满足bn= ,求{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)的定义域为(-3,3),
满足f(-x)=-f(x),且对任意x,y,都有f(x)-f(y)=f(x-y),当x<0时,f(x)>0,f(1)=-2.
(1)求f(2)的值;
(2)判断f(x)的单调性,并证明;
(3)若函数g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x+1)e2x , g(x)=aln(x+1)+ x2+(3﹣a)x+a(a∈R).
(1)当a=9,求函数y=g(x)的单调区间;
(2)若f(x)≥g(x)恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资人欲将5百万元奖金投入甲、乙两种理财产品,根据银行预测,甲、乙两种理财产品的收益与投入奖金的关系式分别为,其中为常数且.设对乙种产品投入奖金百万元,其中.
(1)当时,如何进行投资才能使得总收益最大;(总收益)
(2)银行为了吸储,考虑到投资人的收益,无论投资人奖金如何分配,要使得总收益不低于,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com