【题目】已知各项均为正数的数列{an}的前n项和Sn>1,且6Sn=(an+1)(an+2),n∈N* .
(1)求{an}的通项公式;
(2)若数列{bn}满足bn= ,求{bn}的前n项和.
【答案】
(1)解:∵6Sn=(an+1)(an+2),
∴6Sn+1=(an+1+1)(an+1+2),
∴(an+an﹣1)(an﹣an﹣1﹣3)=0,
∵an>0,
∴an﹣an﹣1=3,
∴{an}为等差数列
∵6S1=(a1+1)(a1+2),
∵a1>1,
∴a1=2,
∴an=3n﹣1
(2)解:bn= = = ( ﹣ ),
∴{bn}的前n项和为 ( ﹣ )= ( ﹣ )
【解析】(1)由6Sn=(an+1)(an+2)得到6Sn+1=(an+1+1)(an+1+2),两式作差,即可证明{an}为等差数列,从而求出an . (2)由an=3n﹣1,推导出bn= ( ﹣ ),由此利用裂项求和法能求出数列{bn}的前n.
【考点精析】根据题目的已知条件,利用数列的前n项和和数列的通项公式的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx,g(x)= .
(Ⅰ)记F(x)=f(x)﹣g(x),判断F(x)在区间(1,2)内零点个数并说明理由;
(Ⅱ)记(Ⅰ)中的F(x)在(1,2)内的零点为x0 , m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有两个不等实根x1 , x2(x1<x2),判断x1+x2与2x0的大小,并给出对应的证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体中, 分别是棱的中点, 为棱上一点,且异面直线与所成角的余弦值为.
(1)证明: 为的中点;
(2)求平面与平面所成锐二面角的余弦值.
【答案】(1)见解析(2)
【解析】试题分析:(1)以为坐标原点,建立如图所示的空间直角坐标系,不妨令正方体的棱长为2,设,利用,解得,即可证得;
(2)分别求得平面与平面的法向量,利用求解即可.
试题解析:
(1)证明:以为坐标原点,建立如图所示的空间直角坐标系.
不妨令正方体的棱长为2,
则, , , , ,
设,则, ,
所以 ,
所以,解得(舍去),即为的中点.
(2)解:由(1)可得, ,
设是平面的法向量,
则.令,得.
易得平面的一个法向量为,
所以.
所以所求锐二面角的余弦值为.
点睛:空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.
【题型】解答题
【结束】
22
【题目】已知椭圆的短轴长为2,且椭圆过点.
(1)求椭圆的方程;
(2)设直线过定点,且斜率为,若椭圆上存在两点关于直线对称, 为坐标原点,求的取值范围及面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆锥OO1的体积为π.设它的底面半径为x,侧面积为S.
(1)试写出S关于x的函数关系式;
(2)当圆锥底面半径x为多少时,圆锥的侧面积最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,是定义域为的奇函数.
(1)确定的值;
(2)若,函数,,求的最小值;
(3)若,是否存在正整数,使得对恒成立?若存在,请求出所有的正整数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机构在某一学校随机抽取30名学生参加环保知识测试,测试成绩(单位:分)如图所示,假设得分值的中位数为me , 众数为m0 , 平均值为 ,则( )
A.me=m0=
B.me=m0<
C.me<m0<
D.m0<me<
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于区间,若函数同时满足:①在上是单调函数;②函数,的值域是,则称区间为函数的“保值”区间.
(1)求函数的所有“保值”区间.
(2)函数是否存在“保值”区间?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com