精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1+lnx
x
(x≥1).
(Ⅰ)试判断函数f(x)的单调性,并说明理由;
(Ⅱ)若f(x)
k
x+1
恒成立,求实数k的取值范围.
(I)求导函数,可得f′(x)=-
lnx
x2

∵x≥1,∴lnx≥0,∴f′(x)≤0
∴f(x)在[1,+∞)上单调递减;
(II)f(x)
k
x+1
恒成立,即
(x+1)(1+lnx)
x
≥k恒成立,
记g(x)=
(x+1)(1+lnx)
x
,则g′(x)=
x-lnx
x2

再令h(x)=x-lnx,则h′(x)=1-
1
x

∵x≥1,∴h′(x)≥0,∴h(x)在[1,+∞)上单调递增.
∴[h(x)]min=h(1)=1>0,从而g′(x)>0  
故g(x)在[1,+∞)上也单调递增
∴[g(x)]min=g(1)=2
∴k≤2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案