精英家教网 > 高中数学 > 题目详情
3.若角α的终边经过点P(1,m),且tanα=-2,则sinα=(  )
A.$\frac{\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{5}$D.-$\frac{2\sqrt{5}}{5}$

分析 由任意角的正切函数的定义可得m的值,再求出sinα.

解答 解:∵角α的终边经过点P(1,m),且tanα=-2,
∴m=-2,
∴sinα=$\frac{-2}{\sqrt{5}}$=-$\frac{2\sqrt{5}}{5}$.
故选:D.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax2-2x+2+lnx(a>0)
(1)若f(x)在其定义域上是单调增函数,求实数a的取值集合;
(2)当a=$\frac{3}{8}$时,函数y=f(x)在[en,+∞](n∈Z)有零点,求n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=cos(x+$\frac{π}{4}$)sinx,则函数f(x)的图象(  )
A.最小正周期为T=2πB.关于点($\frac{π}{8}$,-$\frac{\sqrt{2}}{4}$)对称
C.在区间(0,$\frac{π}{8}$)上为减函数D.关于直线x=$\frac{π}{8}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的公差d=2,前n项的和为Sn.等比数列{bn}满足b1=a1,b2=a4,b3=a13
(I)求{an},{bn}及数列{bn}的前n项和Bn
(II)记数列{$\frac{1}{{S}_{n}}$}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知三个正数a,b,c为等比数列,则$\frac{a+c}{b}$+$\frac{b}{a+c}$的最小值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{m}$=(2,4),|$\overrightarrow{n}$|=$\sqrt{5}$,若$\overrightarrow{m}$,$\overrightarrow{n}$间的夹角为$\frac{π}{3}$,则|2$\overrightarrow{m}$-3$\overrightarrow{n}$|=$\sqrt{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.给出以下命题:
①双曲线$\frac{y^2}{2}$-x2=1的渐近线方程为y=±$\sqrt{2}$x;
②命题P:?x∈R+,sinx+$\frac{1}{sinx}$≥1是真命题;
③已知线性回归方程为$\widehaty$=3+2x,当变量x增加2个单位,其预报值平均增加4个单位;
④设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=0.2,则P(-1<ξ<0)=0.6;
则正确命题的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对实数a和b,定义运算“⊕”:a⊕b=$\left\{\begin{array}{l}a,a-b≤1\\ b,a-b>1\end{array}$.若函数f(x)=(x2-2)⊕(x-x2)-c,x∈R有两个零点,则实数c的取值范围为$({-∞,-2}]∪({-1,-\frac{3}{4}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设Sn为数列{an}的前项和,已知a1≠0,2an-a1=S1•Sn,则数列{nan}的前n项和为(n-1)×2n+1.n∈N+

查看答案和解析>>

同步练习册答案