分析 先求出平面ABC的法向量,再利用法向量的夹角公式即可得出.
解答
解:∵A(1,0,0),B(0,2,0),C(0,0,3),
∴$\overrightarrow{AB}=(-1,2,0)$,$\overrightarrow{AC}=(-1,0,3)$.
设平面ABC的法向量为$\overrightarrow{n}=(x,y,z)$,则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=-x+2y=0}\\{\overrightarrow{n}•\overrightarrow{AC}=-x+3z=0}\end{array}\right.$,
令x=2,则y=1,z=$\frac{2}{3}$.∴$\overrightarrow{n}=(2,1,\frac{2}{3})$.
①取平面xoy的法向量$\overrightarrow{m}=(0,0,1)$.
则$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|\;|\overrightarrow{n}|}$=$\frac{\frac{2}{3}}{1×\sqrt{{2}^{2}+1+(\frac{2}{3})^{2}}}$=$\frac{2}{7}$.
则平面x0y与平面ABC夹角的余弦为$\frac{2}{7}$.
②设平面xoz的法向量$\overrightarrow{m}$=(0,1,0).
则$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|\;|\overrightarrow{n}|}$=$\frac{1}{1×\sqrt{{2}^{2}+1+(\frac{2}{3})^{2}}}$=$\frac{3}{7}$.
则平面x0z与平面ABC夹角的余弦为$\frac{3}{7}$.
③设平面yoz的法向量$\overrightarrow{m}$=(1,0,0).
则$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|\;|\overrightarrow{n}|}$=$\frac{2}{1×\sqrt{{2}^{2}+1+(\frac{2}{3})^{2}}}$=$\frac{6}{7}$.
则平面y0z与平面ABC夹角的余弦为$\frac{6}{7}$.
点评 本题主要考查二面角的计算,利用向量法是解决二面角的常用方法,熟练掌握利用二面角的两个半平面的法向量的夹角公式求得二面角是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a2<b2 | B. | $\frac{a}{b}<1$ | C. | a<1-b | D. | $\frac{1}{a}<\frac{1}{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | ||||
| C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com