【题目】已知圆
,圆
,如图,C1,C2分别交x轴正半轴于点E,A.射线OD分别交C1,C2于点B,D,动点P满足直线BP与y轴垂直,直线DP与x轴垂直.
![]()
(1)求动点P的轨迹C的方程;
(2)过点E作直线l交曲线C与点M,N,射线OH⊥l与点H,且交曲线C于点Q.问:
的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.
科目:高中数学 来源: 题型:
【题目】辊子是客家传统农具,南方农民犁开田地后,仍有大的土块.农人便用六片叶齿组成辊轴,两侧装上木板,人跨开两脚站立,既能掌握平衡,又能增加重量,让牛拉动辊轴前进,压碎土块,以利于耕种.这六片叶齿又对应着菩萨六度,即布施持戒忍辱精进禅定与般若.若甲乙每人依次有放回地从这六片叶齿中随机取一片,则这两人选的叶齿对应的“度”相同的概率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,点
为椭圆
:
的右焦点,过
的直线与椭圆
交于
、
两点,线段
的中点为
.
(1)求椭圆
的方程;
(2)若直线
、
斜率的乘积为
,两直线
,
分别与椭圆
交于
、
、
、
四点,求四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的参数方程为
(其中
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)若点
在直线
上,且
,求直线
的斜率;
(2)若
,求曲线
上的点到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,以下关于
的结论其中正确的结论是( )
①当
时,
在
上无零点;
②当
时,
在
上单调递增;
③当
时,
在
上有无数个极值点;
④当
时,
在
上恒成立.
A.①④B.②③C.①②④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂的某种产品成箱包装,每箱20件,每一箱产品在交付用户时,用户要对该箱中部分产品作检验.设每件产品为不合格品的概率都为
,且各件产品是否合格相互独立.
(1)记某一箱20件产品中恰有2件不合格品的概率为
,
取最大值时对应的产品为不合格品概率为
,求
;
(2)现从某一箱产品中抽取3件产品进行检验,以(1)中确定的
作为p的值,已知每件产品的检验费用为10元,若检验出不合格品,则工厂要对每件不合格品支付30元的赔偿费用,检验费用与赔偿费用的和记为
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,①已知点
,直线
,动点P满足到点Q的距离与到直线
的距离之比为
.②已知点
是圆
上一个动点,线段HG的垂直平分线交GE于P.③点
分别在
轴,y轴上运动,且
,动点P满足
.
(1)在①,②,③这三个条件中任选一个,求动点P的轨迹C的方程;
(注:如果选择多个条件分别解答,按第一个解答计分)
(2)设圆
上任意一点A处的切线交轨迹C于M,N两点,试判断以MN为直径的圆是否过定点?若过定点,求出该定点坐标.若不过定点,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com