分析 (1)去掉绝对值符号,转化不等式求解即可;
(2)利用基本不等式化简求解表达式的最值即可.
解答 解:(1)原不等式等价于$\left\{\begin{array}{l}x≤-1\\-3x+1<3x+5\end{array}\right.$或$\left\{\begin{array}{l}-1<x≤1\\ 3-x<3x+5\end{array}\right.$或$\left\{\begin{array}{l}x>1\\ 3x-1<3x+5\end{array}\right.$,解得$x>-\frac{1}{2}$
(2)由已知a,b∈[0,1],则ab+(1-a-b)(a+b)
$≤{(\frac{a+b}{2})^2}+(a+b)-{(a+b)^2}=\frac{1}{3}-\frac{3}{4}{[(a+b)-\frac{2}{3}]^2}$
又a+b∈[0,2],则$a+b=\frac{2}{3}$时ab+(1-a-b)(a+b)的最大值为$\frac{1}{3}$.
点评 本题考查绝对值不等式的解法,基本不等式的应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | (-2,2) | B. | (-2,4) | C. | ($\frac{1}{8}$,2) | D. | ($\frac{1}{8}$,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $1+\sqrt{3}$ | B. | $2+\sqrt{3}$ | C. | $12+6\sqrt{3}$ | D. | $4+2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | (2,+∞)∪{-3} | C. | [-3,∞) | D. | (-∞,-3] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{7}$ | B. | $\frac{1}{3}$ | C. | 3 | D. | 7 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com