精英家教网 > 高中数学 > 题目详情
已知函数f(x)=e|x|+a(e=2.71828…是自然对数的底数)的最小值为1.
(Ⅰ)求实数a的值;
(Ⅱ)已知b∈R且x<0,试解关于x的不等式lnf(x)<x2+(2b-1)x-3b2';
(Ⅲ)已知m∈Z且m>l,若存在实数t∈[-1,+∞),使得对任意的x∈[1,m]都有f(x+t)≤ex,试求m的最大值.
考点:指数函数综合题
专题:导数的概念及应用
分析:(Ⅰ)由e|x|+a的最小值为1,可得函数f(x)的最小值为1+a=1,由此求得a的值.
(Ⅱ)由f(x)=e|x|,x<0,可得lnf(x)=-x+ln3.不等式化为-x<x2+(2b-1)x-3b2,即(x+3b)(x-b)>0.再分当b≥0时,和b<0时两种情况,分别求得不等式的解集.
(Ⅲ)由题意可得x+t≥0,f(x+t)≤3ex,等价于 t≤1+lnx-x.原命题等价转化为:存在实数t∈[-1,+∞),使得不等式t≤1+lnx-x对任意x∈[1,m]恒成立.再利用导数求得h(x)=1+lnx-x的最小值为h(x)min=h(m)=1+lnm-m,由此求得h(m)≥-1的最大整数m的值.
解答: 解:(Ⅰ)∵|x|≥0,
∴f(x)=e|x|+a≥e0+a=1+a,
∵函数f(x)的最小值为1.
∴a=0,
(Ⅱ)由(Ⅰ)得,f(x)=e|x|
当x<0,lnf(x)=-x,
∵lnf(x)<x2+(2b-1)x-3b2
∴-x<x2+(2b-1)x-3b2
即x2+2bx-3b2>0,
得(x+3b)(x-b)>0,
∴当b≥0时,不等式的解集为(-∞,-3b),
当b<0时,不等式的解集为(-∞,b),
(Ⅲ)∵当t∈[-1,+∞),x∈[1,m]时,x+t≥0,
∵f(x+t)≤ex,
∴ex+t≤ex,
∴t≤1+lnx-x,
令h(x)=1+lnx-x,(x∈[1,m]),
∴h′(x)=
1
x
-1=
1-x
x
≤0,
∴函数h(x)在[1,m]上单调递减,
∴h(x)max=h(m)=1+lnm-m,
∴1+lnm-m≥-1
即lnm-m+2≥0,
令g(m)=2+lnm-m,(m>1)
∴g′(m)=
1
m
-1
=
1-m
m
<0,
∴函数g(m)在(1,+∞)上单调递减,
∵g(3)=ln3-1=ln
3
e
>0,g(4)=ln4-2=ln
4
e2
<0
∴满足条件的最大整数m的值为3.
点评:本题主要考查指数不等式、对数不等式的解法,函数的恒成立问题,利用导数研究函数的单调性,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-
1
2
)•f(
1
2
)<0,则方程f(x)=0在[-1,1]内有
 
个实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点F作圆O:x2+y2=b2的一条切线,切点为A,双曲线右顶点为B,若
|AF|,|OF|,|BF|成等差数列,则双曲线的离心率为(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AB=3,A、B分别在x轴和y轴上滑动,O为坐标原点,
OP
=
2
3
OA
+
1
3
OB
,则动点P的轨迹方程是(  )
A、
x2
4
+y2=1
B、x2+
y2
4
=1
C、
x2
9
+y2=1
D、x2+
y2
9
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,且a≠b,试比较aabb(ab)
a+b
2
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上,其左、右焦点分别为F1,F2,短轴长为2
3
.点P在椭圆C上,且满足△PF1F2的周长为6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点(-1,0)的直线l与椭圆C相交于A,B两点,试问在x轴上是否存在一个定点M,使得
MA
MB
恒为定值?若存在,求出该定值及点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
4
-
y2
3
=1的左、右顶点分别为A1和A2,M(x1,-y1)和N(x1,y1)是双曲线上两个不同的动点.
(1)求直线A1M与A2N交点Q的轨迹C的方程;
(2)过点P(l,0)作斜率为k(k≠0)的直线l交轨迹C于A、B两点,
①求
OA
OB
的取值范围;
②若
AP
PB
,问在x轴上是否存在定点E,使得
OP
EA
EB
?若存在,求出E点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠ACB是直角,D是AB的中点,F是CD的中点,求
AF
FE
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个正六棱锥的底面边长为6,体积为48,求其侧面积.

查看答案和解析>>

同步练习册答案