18£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßC£º¦Ñsin2¦È=2cos¦È£¬¹ýµãP£¨2£¬-1£©µÄÖ±Ïßl£º$\left\{{\begin{array}{l}{x=2+tcos{{45}¡ã}}\\{y=-1+tsin{{45}¡ã}}\end{array}}$£¨tΪ²ÎÊý£©ÓëÇúÏßC½»ÓÚM¡¢NÁ½µã£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©Çó|PM|2+|PN|2µÄÖµ£®

·ÖÎö £¨1£©ÇúÏßC£º¦Ñsin2¦È=2cos¦È£¬¼´¦Ñ2sin2¦È=2¦Ñcos¦ÈÀûÓü«×ø±êÓëÖ±½Ç×ø±êÖ®¼äµÄ¹ØÏµ¼´¿ÉµÃ³öÆäÖ±½Ç×ø±ê·½³Ì£»ÏûÈ¥²ÎÊýtµÃµ½ÇúÏßCµÄÖ±½Ç×ø±ê·½£º
£¨2£©½«Ö±Ïßl£º$\left\{{\begin{array}{l}{x=2+tcos{{45}¡ã}}\\{y=-1+tsin{{45}¡ã}}\end{array}}$´úÈëÇúÏßCµÄ±ê×¼·½³Ì£ºy2=2xµÃ£ºt2-4$\sqrt{2}$t-6=0£¬ÀûÓÃÖ±ÏߵIJÎÊý·½³ÌÖÐtµÄ¼¸ºÎÒâÒå½áºÏ¸ùÓëϵÊýµÄ¹ØÏµ£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©ÇúÏßC£º¦Ñsin2¦È=2cos¦È£¬¼´¦Ñ2sin2¦È=2¦Ñcos¦È£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪy2=2x£»
Ö±Ïßl£º$\left\{{\begin{array}{l}{x=2+tcos{{45}¡ã}}\\{y=-1+tsin{{45}¡ã}}\end{array}}$£¨tΪ²ÎÊý£©£¬ÏûÈ¥t£¬¿ÉµÃÖ±ÏßlµÄÆÕͨ·½³Ìx-y-3=0£»
£¨2£©½«Ö±Ïßl£º$\left\{{\begin{array}{l}{x=2+tcos{{45}¡ã}}\\{y=-1+tsin{{45}¡ã}}\end{array}}$´úÈëÇúÏßCµÄ±ê×¼·½³Ì£ºy2=2xµÃ£ºt2-4$\sqrt{2}$t-6=0£¬
¡à|PM|2+|PN|2=|t1|2+|t2|2=£¨t1-t2£©2+2t1t2=32£®

µãÆÀ ±¾Ì⿼²éµãµÄ¼«×ø±êºÍÖ±½Ç×ø±êµÄ»¥»¯£¬¿¼²é²ÎÊýµÄ¼¸ºÎÒâÒ壮ÀûÓÃÖ±½Ç×ø±êÓë¼«×ø±ê¼äµÄ¹ØÏµ£¬¼´ÀûÓæÑcos¦È=x£¬¦Ñsin¦È=y£¬¦Ñ2=x2+y2£¬½øÐдú»»¼´µÃ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®´óÑÜÊýÁУ¬À´Ô´ÓÚÖйú¹Å´úÖø×÷¡¶Ç¬À¤Æ×¡·ÖжÔÒ×´«¡°´óÑÜÖ®ÊýÎåÊ®¡±µÄÍÆÂÛ£®Æäǰ10ÏîΪ£º0¡¢2¡¢4¡¢8¡¢12¡¢18¡¢24¡¢32¡¢40¡¢50£®
ͨÏʽ£ºan=$\left\{\begin{array}{l}{\frac{{n}^{2}-1}{2}£¬nÎªÆæÊý}\\{\frac{{n}^{2}}{2}£¬nΪżÊý}\end{array}\right.$       
Èç¹û°ÑÕâ¸öÊýÁÐ{an}ÅųÉÓÒ²àÐÎ×´£¬²¢¼ÇA£¨m£¬n£©±íʾµÚmÐÐÖдÓ×óÏòÓÒµÚn¸öÊý£¬ÔòA£¨10£¬4£©µÄֵΪ3612£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èô$\frac{lg7}{lg5}=\frac{1}{a}$£¬Ôò7a=£¨¡¡¡¡£©
A£®$\frac{1}{7}$B£®$\frac{1}{5}$C£®5D£®7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èôtan¦Á-$\frac{1}{tan¦Á}$=$\frac{3}{2}$£¬¦Á¡Ê£¨${\frac{¦Ð}{4}$£¬$\frac{¦Ð}{2}}$£©£¬Ôòsin£¨2¦Á+$\frac{¦Ð}{4}}$£©µÄֵΪ£¨¡¡¡¡£©
A£®$-\frac{{\sqrt{2}}}{5}$B£®$\frac{{\sqrt{2}}}{5}$C£®$-\frac{{\sqrt{2}}}{10}$D£®$\frac{{\sqrt{2}}}{10}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ä³Äê¼¶ÓÐ900ÃûѧÉú£¬Ëæ»ú±àºÅΪ001£¬002£¬¡­£¬900£¬ÏÖÓÃϵͳ³éÑù·½·¨£¬´ÓÖгé³ö150ÈË£¬Èô015ºÅ±»³éµ½ÁË£¬ÔòÏÂÁбàºÅÒ²±»³éµ½µÄÊÇ£¨¡¡¡¡£©
A£®036B£®081C£®136D£®738

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª¶þÏîʽ${£¨{x+\frac{1}{2ax}}£©^9}$µÄÕ¹¿ªÊ½ÖÐx3µÄϵÊýΪ$-\frac{21}{2}$£¬Ôò$\int_1^e{£¨{x+\frac{a}{x}}£©}$dxµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{{{e^2}+1}}{2}$B£®$\frac{{{e^2}-3}}{2}$C£®$\frac{{{e^2}+3}}{2}$D£®$\frac{{{e^2}-5}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®sin17¡ãsin223¡ã+sin253¡ãsin313¡ã=£¨¡¡¡¡£©
A£®-$\frac{1}{2}$B£®$\frac{1}{2}$C£®-$\frac{\sqrt{3}}{2}$D£®$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÊýÁÐ{an}Âú×㣺a1=1£¬|an+1-an|=pn£¬n¡ÊN*£¬SnΪÊýÁÐ{an}µÄǰnÏîºÍ£®
£¨1£©Èô{an}ÊǵÝÔöÊýÁУ¬ÇÒa1£¬2a2£¬3a3³ÉµÈ²îÊýÁУ¬ÇópµÄÖµ£»
£¨2£©Èôp=$\frac{1}{2}$£¬ÇÒ{a2n-1}ÊǵÝÔöÊýÁУ¬{a2n}ÊǵݼõÊýÁУ¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©Èôp=1£¬¶ÔÓÚ¸ø¶¨µÄÕýÕûÊýn£¬ÊÇ·ñ´æÔÚÒ»¸öÂú×ãÌõ¼þµÄÊýÁÐ{an}£¬Ê¹µÃSn=n£¬Èç¹û´æÔÚ£¬¸ø³öÒ»¸öÂú×ãÌõ¼þµÄÊýÁУ¬Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÏÂÁк¯ÊýÖУ¬ÔÚRÉÏΪÔöº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®y=-2x+1B£®y=-$\frac{2}{x}$C£®y=2xD£®y=x2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸