精英家教网 > 高中数学 > 题目详情
18.关于x的不等式x2-ax+a>0恒成立,则实数a的取值范围为(  )
A.(-∞,0)∪(2,+∞)B.(0,2)C.(-∞,0)∪(4,+∞)D.(0,4)

分析 由题意和二次函数的性质列出不等式,求出a的取值范围.

解答 解:因为不等式x2-ax+a>0恒成立(a≠0)恒成立,
所以△=a2-4a<0,解得0<a<4,
故选:D.

点评 本题考查利用二次函数的性质解决恒成立问题,注意开口方向,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.把下面在平面内成立的结论类比地推广到空间,结论还正确的是(  )
A.如果一条直线与两条平行线中的一条相交,则必与另一条相交
B.如果两条直线同时与第三条直线垂直,则这两条直线平行
C.如果两条直线同时与第三条直线相交,则这两条直线相交
D.如果一条直线与两条平行线中的一条垂直,则必与另一条垂直

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=$\frac{2x}{x+1}$,则f($\frac{1}{2016}}$)+f(${\frac{1}{2015}}$)+…f(${\frac{1}{2}}$)+f(1)+f(2)+…+f(2016)=4031.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若(1-3x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R),则$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{2016}}{{3}^{2016}}$的值为(  )
A.-1B.-2C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在棱长为a的正方体ABCD-A1B1C1D1中,E,F,P,Q分别是BC,C1D1,AD1,BD的中点.
(1)求证:PQ∥平面DCC1D1
(2)求PQ的长;
(3)求证:EF∥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.以下列结论:
①△ABC中,若A>B,则sinA>sinB;  
②若$\overrightarrow a$•$\overrightarrow b$<0,则$\overrightarrow a$与$\overrightarrow b$的夹角为钝角; 
③将函数y=3sin2x的图象向右平移$\frac{π}{3}$个单位长度可以得到f(x)=3sin(2x-$\frac{π}{3}$)的图象; 
④函数f(x)=2sin(x+$\frac{π}{6}$)sin($\frac{π}{3}$-x)在x∈[-$\frac{π}{4}$,$\frac{π}{4}}$]上的值域为[-$\frac{1}{2}$,1]; 
⑤若0<tanAtanB<1,则△ABC为钝角三角形.
则上述结论正确的是①④⑤.(填相应结论对应的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,若∠A=60°,b=16,且此三角形的面积S=220$\sqrt{3}$,则a的值是(  )
A.$\sqrt{2400}$B.25C.55D.49

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知1<x<2,a=$\frac{lnx}{x}$,b=$\frac{ln{x}^{2}}{{x}^{2}}$,c=($\frac{lnx}{x}$)2,则a,b,c的大小关系为(用“<”连接):c<a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果PA、PB、PC两两垂直,那么点P在平面ABC内的投影一定是△ABC(  )
A.重心B.内心C.外心D.垂心

查看答案和解析>>

同步练习册答案