精英家教网 > 高中数学 > 题目详情
已知曲线C:,点及点,从A点观察点B,要使视线不被曲线C挡住,则实数a的取值范围是(   )
A.B.C.D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
(Ⅰ) 已知动点到点与到直线的距离相等,求点的轨迹的方程;
(Ⅱ) 若正方形的三个顶点()在(Ⅰ)中的曲线上,设的斜率为,求关于的函数解析式
(Ⅲ) 求(2)中正方形面积的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设动点P到点A(-l,0)和B(1,0)的距离分别为d1d2
APB=2θ,且存在常数λ(0<λ<1=,使得d1d2 sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)过点B作直线交双曲线C的右支于MN
点,试确定λ的范围,使·=0,其中点
O为坐标原点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题8分) 已知直线过点且与直线垂直,抛物线C:与直线交于A、B两点.
(1)求直线的参数方程;
(2)设线段AB的中点为P,求P的坐标和点M到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知区域的外接圆Cx轴交于点A1A2,椭圆C1以线段A1A2为长轴,离心率
⑴求圆C及椭圆C1的方程;
⑵设圆轴正半轴交于点D,点为坐标原点,中点为,问是否存在直线与椭圆交于两点,且?若存在,求出直线夹角的正切值的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,A点的坐标为(3,0),BC边长为2,且BCy轴上的区间[-3,3]上滑动.
(1)求△ABC外心的轨迹方程;
(2)设直线ly=3xb与(1)的轨迹交于EF两点,原点到直线l的距离为d,求 的最大值.并求出此时b的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,当mn取得最小值时,直线与曲线交点个数为              .w.&

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆和双曲线的公共焦点为是两曲线的一个公共点,则cos的值等于(    )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线C的顶点在坐标原点,焦点为F(1,0),过点的直线l与抛物线C相交于AB两点。若AB的中点为,则弦的长为_________。

查看答案和解析>>

同步练习册答案