精英家教网 > 高中数学 > 题目详情
6.集合A={x|1≤x<3},B={x|a<x≤2a-1},若B⊆A,则实数a的取值范围是(  )
A.(1,2)B.[1,2)C.(-∞,2)D.(-∞,2]

分析 利用条件B⊆A,建立a的不等式关系即可求解.

解答 解:若B=∅,即a≥2a-1,即a≤1时,满足B⊆A,
若B≠∅,即a<2a-1,即a>1时,
要使B⊆A,
则满足$\left\{\begin{array}{l}{a>1}\\{2a-1<3}\end{array}\right.$,解得1<a<2,
综上:a<2,
故选C.

点评 本题主要考查集合关系的应用,考查分类讨论的思想,利用数轴是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{(x+1)(x-2)}$与函数g(x)=$\frac{1}{{\sqrt{{x^2}-(2a+1)x+a(a+1)}}}$,若它们的定义域分别为集合A,B,
(1)求集合A、B;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}满足a1=2,an≠1,(an+1-an)g(an)+f(an)=0.
(1)求证:an+1=$\frac{3}{4}$an+$\frac{1}{4}$;
(2)求数列{an-1}的通项公式;
(3)若bn=3f(an)-g(an+1),求{bn}中的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}的前n项和为Sn,且Sn=2n-1,数列{bn}满足b1=2,bn+1-2bn=8an
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Tn,是否存在常数λ,使得不等式(-1)nλ<1+$\frac{{T}_{n}-6}{{T}_{n+1}-6}$恒成立?若存在,求出λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且a:b:c=2:3:4,则△ABC中最大角的余弦值是$-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{3}$x3+ax2-bx(a,b∈R),若y=f(x)图象上的点(1,-$\frac{11}{3}$)处的切线斜率为-4,
(1)求f(x)的解析式.
(2)求y=f(x)的极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.平面直角坐标系的原点为O,椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F,直线PQ过F交椭圆于P,Q两点,且|PF|max•|QF|min=$\frac{a^2}{4}$.
(1)求椭圆的长轴与短轴之比;
(2)如图,线段PQ的垂直平分线与PQ交于点M,与x轴,y轴分别交于D,E两点,求$\frac{{{S_{△DFM}}}}{{{S_{△DOE}}}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知某棱锥的三视图如图所示,则该棱锥的表面积为(  )
A.2+$\sqrt{5}$B.3+$\frac{\sqrt{5}}{2}$C.2+$\frac{\sqrt{5}}{2}$D.3+$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)为R上的偶函数,且在[0,+∞)内是增函数,又f(2)=0,则 f(x)<0的解集为(  )
A.(-2,2)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)

查看答案和解析>>

同步练习册答案