精英家教网 > 高中数学 > 题目详情

已知,且两函数定义域均为
(1).画函数在定义域内的图像,并求值域;(5分)
(2).求函数的值域.(5分)

(1)图像见解析,;(2)

解析试题分析:(1)可以采用描点法,首先画出顶点和两个端点,然后用平滑的曲线描下即可,从图像中即可读出的值域;
试题解析:(1)函数在定义域范围内的图像如图:

从图像中可以读出,函数在定义域范围内的值域为
(2)由(1)知,所以,即
所以,函数在定义域范围内的值域为
考点:1.二次函数的图像和性质;2.对数函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为万元,年维修费用第一年是万元,第二年是万元,第三年是万元,…,以后逐年递增万元汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的和平均摊到每一年的费用叫做年平均费用.设这种汽车使用年的维修费用的和为,年平均费用为.
(1)求出函数的解析式;
(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数集合
(1)若求函数的解析式;
(2)若,且在区间上的最大值、最小值分别为,记,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为其反函数.
(Ⅰ)说明函数图象的关系(只写出结论即可);
(Ⅱ)证明的图象恒在的图象的上方;
(Ⅲ)设直线均相切,切点分别为()、(),且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象关于轴对称,且.
(1)求函数的解析式;
(2)当时,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求证不论为何实数,总是增函数;
(2)确定的值,使为奇函数;
(3)当为奇函数时,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是关于的方程的两个根,且.
(1)求出之间满足的关系式;
(2)记,若存在,使不等式在其定义域范围内恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(1)请写出的表达式(不需证明);
(2)求的极小值;
(3)设的最大值为的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为 
(1)求的值;
(2)若函数在区间上是单调递减函数,求实数的取值范围。

查看答案和解析>>

同步练习册答案