已知数列{an}的前n项和为Sn,且满足:a1=a(a≠0),an+1=rSn(n∈N*,r∈R,r≠-1).
(1)求数列{an}的通项公式;
(2)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差数列,试判断:对于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差数列,并证明你的结论.
解析 (1)由已知an+1=rSn,可得an+2=rSn+1,两式相减可得an+2-an+1=r(Sn+1-Sn)=ran+1,即an+2=(r+1)an+1,又a2=ra1=ra,
所以当r=0时,数列{an}为:a,0,…,0,…;
当r≠0,r≠-1时,由已知a≠0,所以an≠0(n∈N*),
于是由an+2=(r+1)an+1,可得
=r+1(n∈N*),
∴a2,a3,…,an,…成等比数列,
∴当n≥2时,an=r(r+1)n-2a.
综上,数列{an}的通项公式为an=![]()
(2)对于任意的m∈N*,且m≥2,am+1,am,am+2成等差数列.证明如下:
当r=0时,由(1)知,an=![]()
∴对于任意的m∈N*,且m≥2,am+1,am,am+2成等差数列.
当r≠0,r≠-1时,∵Sk+2=Sk+ak+1+ak+2,Sk+1=Sk+ak+1.若存在k∈N*,
使得Sk+1,Sk,Sk+2成等差数列,则Sk+1+Sk+2=2Sk,
∴2Sk+2ak+1+ak+2=2Sk,即ak+2=-2ak+1.
由(1)知,a2,a3,…,am,…的公比r+1=-2,于是
对于任意的m∈N*,且m≥2,am+1=-2am,从而am+2=4am,
∴am+1+am+2=2am,即am+1,am,am+2成等差数列.
综上,对于任意的m∈N*,且m≥2,am+1,am,am+2成等差数列.
科目:高中数学 来源: 题型:
把1,3,6,10,15,21这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如图所示).
![]()
则第七个三角形数是( ).
A.27 B.28 C.29 D.30
查看答案和解析>>
科目:高中数学 来源: 题型:
已知数列{xn}满足lg xn+1=1+lg xn(n∈N*),且x1+x2+x3+…+x100=1,则lg(x101+x102+…+x200)=________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com