精英家教网 > 高中数学 > 题目详情
8.若平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{2}$,$\overrightarrow{a}$+$\overrightarrow{b}$平行于向量$\overrightarrow{m}$=(1,1),且$\overrightarrow{b}$=(3,-2),则$\overrightarrow{a}$=(-5,0),或(-1,4).

分析 先设$\overrightarrow{a}=(x,y)$,求出$\overrightarrow{a}+\overrightarrow{b}$的坐标,根据$\overrightarrow{a}+\overrightarrow{b}$与向量$\overrightarrow{m}$平行即可得到x=y-5,这时写出$\overrightarrow{a}+\overrightarrow{b}=(y-2)•(1,1)$,再根据$|\overrightarrow{a}+\overrightarrow{b}|=2\sqrt{2}$即可求出y,x,从而得出向量$\overrightarrow{a}$的坐标.

解答 解:设$\overrightarrow{a}=(x,y)$,$\overrightarrow{a}+\overrightarrow{b}=(x+3,y-2)$;
∵$(\overrightarrow{a}+\overrightarrow{b})$∥$\overrightarrow{m}$;
∴x+3-(y-2)=0;
∴x=y-5①;
∴$\overrightarrow{a}+\overrightarrow{b}=(y-2)•(1,1)$;
∴由$|\overrightarrow{a}+\overrightarrow{b}|=2\sqrt{2}$得:$\sqrt{2}|y-2|=2\sqrt{2}$;
∴y=0,或4;
∴x=-5,或-1;
∴$\overrightarrow{a}=(-5,0),或(-1,4)$.
故答案为:(-5,0)或(-1,4).

点评 考查向量坐标的加法运算,向量平行时的坐标关系,以及根据向量的坐标求向量的长度,向量坐标的数乘运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.有一天猎手带着他的两头猎犬跟踪某动物的踪迹,他们来达到一个三岔口,现在需要从两个方向中选择一个追踪方向,猎手知道两条猎犬会相互独立地以概率p找到正确的方向,因此他让两条猎犬选择它们的方向,如果两头猎犬选择同一方向,他就沿着这个方向走,若两条猎犬选择不同的方向,他就随机地选择一个方向走,这个策略是否比只让一个猎犬选择方向优越?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数y=ax2-2ax(a≠0).
(1)函数在区间[0,3]上有最大值3,求a的值;
(2)函数在区间上[0,3]上有最小值-3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+t\\ y=\sqrt{3}t\end{array}\right.$(t为参数),极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,曲线C的极坐标方程为ρ=$\frac{4cosθ}{si{n}^{2}θ}$,直线l与曲线C相交于A、B两点,则弦长|AB|=$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an},{bn}中,a1=a,{bn}是公比为$\frac{2}{3}$的等比数列.记bn=$\frac{{a}_{n}-2}{{a}_{n}-1}$(n∈N*)若不等式an>an+1对一切n∈N*恒成立,则实数a的取值范围是(  )
A.(0,1)B.(0,2)C.($\frac{3}{2}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.用数学归纳法证明:“两两相交且不共点的n条直线把平面分为f(n)部分,则f(n)=1+$\frac{n(n+1)}{2}$.”在证明第二步归纳递推的过程中,用到f(k+1)=f(k)+(  )
A.k-1B.kC.k+1D.$\frac{k(k+1)}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知矩阵M=$[\begin{array}{l}{x}&{5}\\{6}&{6}\end{array}]$不存在逆矩阵,则x=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$.
(1)分别求f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$),f(4)+f($\frac{1}{4}$)的值;
(2)归纳猜想一般性结论,并给出证明;
(3)求值:f(1)+f(2)+f(3)+…+f(2015)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2015}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知三棱柱ABC-A1B1C1中,底面ABC是等腰直角三角形,侧棱AA1⊥底面ABC,D是BC的中点,AA1=AB=AC=2,
(1)求证:平面AB1D⊥平面B1BCC1
(2)求证:A1C∥平面AB1D;
(3)求三棱锥A1-B1DA的体积.

查看答案和解析>>

同步练习册答案