精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$.
(1)分别求f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$),f(4)+f($\frac{1}{4}$)的值;
(2)归纳猜想一般性结论,并给出证明;
(3)求值:f(1)+f(2)+f(3)+…+f(2015)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2015}$).

分析 (1)分别代入计算即可,求出f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$),f(4)+f($\frac{1}{4}$)的值,
(2)猜想:f(n)+f($\frac{1}{n}$)=1,由于f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,得到f($\frac{1}{x}$)=$\frac{1}{1+{x}^{2}}$,故(x)+f($\frac{1}{x}$)=1,猜想成立,
(3)由(2)的结论,即可求出.

解答 解:(1)f(2)+f($\frac{1}{2}$)=1,f(3)+f($\frac{1}{3}$)=1,f(4)+f($\frac{1}{4}$)=1,
(2)猜想:f(n)+f($\frac{1}{n}$)=1,
证明:∵f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,
∴f($\frac{1}{x}$)=$\frac{(\frac{1}{x})^{2}}{1+(\frac{1}{x})^{2}}$=$\frac{1}{1+{x}^{2}}$.
∴f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{1}{1+{x}^{2}}$=1,
∴f(n)+f($\frac{1}{n}$)=1,
(3)由(2)知f(1)+f(2)+f(3)+…+f(2015)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2015}$),
=f(1)+[f(2)+f($\frac{1}{2}$)]+[f(3)+f($\frac{1}{3}$)]+…+[f(2015)+f($\frac{1}{2015}$)],
=$\frac{1}{2}$+1024,
=$\frac{2049}{2}$.

点评 本题考查函数值的求法,以及归纳探索规律的问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,sinA:sinB:sinC=2:3:x,且△ABC为锐角三角形,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{2}$,$\overrightarrow{a}$+$\overrightarrow{b}$平行于向量$\overrightarrow{m}$=(1,1),且$\overrightarrow{b}$=(3,-2),则$\overrightarrow{a}$=(-5,0),或(-1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设随机变量X的分布列如下:其中a,b,c成等差数列,若$E(X)=\frac{4}{3}$,则D (X)=$\frac{5}{9}$
X012
Pabc

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(A题)某射击运动员一次射击所得环数X的分布如下:
X8910
P0.30.50.2
现进行两次射击,以该运动员两次射击所得环数最高环数作为他的成绩,记为Y.
(Ⅰ)求该运动员两次都命中8环的概率;
(Ⅱ)求Y的分布及平均值(期望)EY.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$α∈(0,\frac{π}{4})$,β∈(0,π)且tan(α-β)=$\frac{1}{2}$,tan$β=-\frac{1}{7}$,求2α-β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC是边长为1的正三角形,M、N分别是边AB、AC上的点,线段MN经过△ABC的中心G.若△AGM的面积为$\frac{1}{12}$,则△AGN的面积为$\frac{{\sqrt{3}+1}}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD=2PD=4,PD⊥底面ABCD.
(1)证明:PA⊥BD;
(2)求三棱锥D-PBC的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=$\frac{x}{sinx}$,则f′($\frac{π}{2}$)等于(  )
A.-$\frac{π}{2}$B.$\frac{π}{2}$C.1D.-1

查看答案和解析>>

同步练习册答案