精英家教网 > 高中数学 > 题目详情
一个几何体的三视图如图所示,则此几何体的体积是(  )
A、112B、80C、72D、64
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:由三视图可知此几何体是由一个棱柱和一个棱锥构成的组合体,代入数据分别求棱柱与棱锥的体积即可.
解答: 解:由三视图可知,此几何体是由一个棱柱和一个棱锥构成的组合体,
棱柱的体积为4×4×4=64;
棱锥的体积为
1
3
×4×4×3=16;
则此几何体的体积为80;
故选B.
点评:本题考查了三视图的识图与计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=2sin(2x+
π
6
)的增区间为(  )
A、[kπ-
π
12
,kπ+
12
],k∈Z
B、[kπ+
12
,kπ+
11π
12
],k∈Z
C、[kπ-
π
3
,kπ+
π
6
],k∈Z
D、[kπ-
π
6
,kπ+
3
],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足:
①定义域为R;
②?x∈R,有f(x+2)=2f(x);
③当x∈(0,2)时,f(x)=2-|2x-2|,设ρ(x)=f(x)-log2|x|(x∈(-8,0)∪(0,8)).
根据以上信息,可以得到函数ρ(x)的零点个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-1,1)上的单调递减函数,且f(a-2)<(1-a),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x、y∈R,且x2+y2=2,求x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若{an}为等差数列,Sn为其前n项和,若a1>0,d<0,S4=S10,则Sn<0成立的最小的自然数n为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足:f(1)=
1
4
,4f(x)f(y)=f(x+y)+f(x-y)(x∈R),则f(2013)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某制造商为2008年北京奥运会生成一批直径为40mm的乒乓球,现随机抽取20只,测得每只球的直径(单位mm,保留两位小数)如下:
40.03  40.00  39.98  40.00   39.99  40.00  39.98  40.01  39.98  39.99   40.00  39.99  39.95  40.0l   40.02  39.98  40.00  39.99  40.00  39.96
(Ⅰ)完成下面的频率分布表,并画出频率分布直方图;
(Ⅱ)假定乒乓球的直径误差不超过0.02mm为合格品.若这批乒乓球的总数为10000只,试根据抽样检查结果估计这批产品的合格只数.

分   组
频数频率
频率
组距
[39.95,39.97)
[39.97,39.99)
[39.99,40.01)
[40.0l,40.03]
合计

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直角梯形ABCD中,AD∥BC,∠A=90°,AB=AD=3,DE⊥DC交AB于E,DF平分∠EDC交BC于F,连接EF.
(1)证明:FD平分∠EFC;
(2)当tan∠ADE=
1
3
时,求BF的长度.

查看答案和解析>>

同步练习册答案