精英家教网 > 高中数学 > 题目详情
已知a,b,c∈R,且a>b,则下列结论一定正确的是(  )
A.a2>b2B.
1
a
1
b
C.2a>2bD.ac2>bc2
∵a,b,c∈R,且a>b,
不妨令a=1,b=-1,c=0,则12=(-1)2,可排除A;
1
1
1
-1
=-1,可排除B;1×02=(-1)×02=0,可排除D;
对于C,当a>b时,由指数函数y=2x的单调递增的性质可知,2a>2b,故C正确.
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

50、已知a,b,c∈R,证明:a2+4b2+9c2≥2ab+3ac+6bc.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:
(1)已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(2)已知a,b,c∈R+,且a+b+c=1,求证:a2+b2+c2 ≥ 
13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c∈R+且满足a+2b+3c=1,则
1
a
+
1
2b
+
1
3c
的最小值为
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a,b,c∈R,且a+b+c=1,求证:a2+b2+c2
1
3

(2)a,b,c为互不相等的正数,且abc=1,求证:
1
a
+
1
b
+
1
c
a
+
b
+
c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c∈R,且a>b,那么下列不等式中成立的是(  )

查看答案和解析>>

同步练习册答案