精英家教网 > 高中数学 > 题目详情
10.在锐角△ABC中,内角A,B,C的对边分别是a,b,c且$1+\frac{{\sqrt{3}}}{3}sin2A=2{sin^2}\frac{B+C}{2}$.
(I)求A;
(II)若△ABC的外接圆半径为$2\sqrt{3}$,求△ABC面积的最大值.

分析 (I)由已知利用三角函数恒等变换的应用化简可得$\frac{2\sqrt{3}}{3}$sinAcosA=cosA,结合cosA≠0,可得sinA,结合范围0$<A<\frac{π}{2}$,可求A的值.
(II)由(I)及正弦定理可求a,由余弦定理,基本不等式可求bc≤36,进而利用三角形面积公式即可计算得解.

解答 (本题满分为12分)
解:(I)∵$1+\frac{{\sqrt{3}}}{3}sin2A=2{sin^2}\frac{B+C}{2}$,
∴$1+\frac{{\sqrt{3}}}{3}sin2A$=1-cos(B+C),…1分
∴$\frac{2\sqrt{3}}{3}$sinAcosA=cosA,…2分
∵在锐角△ABC中,cosA≠0,…3分
∴$\frac{2\sqrt{3}}{3}$sinA=1,可得:sinA=$\frac{\sqrt{3}}{2}$,…4分
∵0$<A<\frac{π}{2}$,
∴可得:A=$\frac{π}{3}$…6分
(II)由(I)知sinA=$\frac{\sqrt{3}}{2}$,且R=2$\sqrt{3}$,由正弦定理,$\frac{a}{sinA}=2R$,
可得:a=2RsinA=4$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=6,…8分
由余弦定理,a2=b2+c2-2bccosA,可得:36=b2+c2-2bc×$\frac{1}{2}$≥2bc-bc=bc,当且仅当b=c时等号成立…10分
∴bc≤36,…11分
∴S△ABC=$\frac{1}{2}$bcsinA≤$\frac{1}{2}×36×\frac{\sqrt{3}}{2}$=9$\sqrt{3}$,即三角形面积的最大值是9$\sqrt{3}$.…12分

点评 本题主要考查了三角函数恒等变换的应用,正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex(x2+x+a)在(0,f(0))处的切线与直线2x-y-3=0平行,其中a∈R.
(1)求a的值;
(2)求函数f(x)在区间[-2,2]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.对任意实数t,不等式|t-3|+|2t+1|≥|2x-1|+|x+2|恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知F1,F2分别为椭圆C:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$的左、右焦点,点P(x0,y0)在椭圆C上.
(Ⅰ)求$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$的最小值;
(Ⅱ)若y0>0且$\overrightarrow{{PF}_{1}}$•$\overrightarrow{F{{\;}_{1}F}_{2}}$=0,已知直线l:y=k(x+1)与椭圆C交于两点A,B,过点P且平行于直线l的直线交椭圆C于另一点Q,问:四边形PABQ能否成为平行四边形?若能,请求出直线l的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在区间[-1,1]上随机取一个数k,使直线$y=kx+\frac{{\sqrt{5}}}{2}$与圆x2+y2=1相交的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x||x-2|≤1},且A∩B=∅,则集合B可能是(  )
A.{2,5}B.{x|x2≤1}C.(1,2)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=2lnx-\frac{1}{2}a{x^2}+({2-a})x({a∈R})$.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若对于?x1,x2∈(0,+∞),且x1<x2,存在正实数x0,使得f(x2)-f(x1)=f'(x0)(x2-x1),试判断$f'({\frac{{{x_1}+{x_2}}}{2}})$与f'(x0)的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设直线m,n是两条不同的直线,α,β是两个不同的平面,下列事件中是必然事件的是(  )
A.若m∥α,n∥β,m⊥n,则α⊥βB.若m∥α,n⊥β,m∥n,则α∥β
C.若m⊥α,n∥β,m⊥n,则α∥βD.若m⊥α,n⊥β,m∥n,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一种在实数域和复数域上近似求解方程的方法可以设计如图所示的程序框图,若输入的n=12,则输出的结果b=(  )
A.4B.$\frac{7}{2}$C.$\frac{97}{28}$D.$\frac{64}{14}$

查看答案和解析>>

同步练习册答案