精英家教网 > 高中数学 > 题目详情
1.对任意实数t,不等式|t-3|+|2t+1|≥|2x-1|+|x+2|恒成立,求实数x的取值范围.

分析 利用分段函数的单调性求得函数f(t)取得最小值为$\frac{7}{2}$,不等式等价于等价于|2x-1|+|x+2|≤$\frac{7}{2}$,去掉绝对值,转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.

解答 解:由于f(t)=$\left\{\begin{array}{l}{-3t+2,t<-\frac{1}{2}}\\{t+4,-\frac{1}{2}≤t≤3}\\{3t-2,t>3}\end{array}\right.$,故当t=-$\frac{1}{2}$时,函数f(t)取得最小值为$\frac{7}{2}$.
∴不等式|t-3|+|2t+1|≥|2x-1|+|x+2|恒成立,等价于|2x-1|+|x+2|≤$\frac{7}{2}$,
∴$\left\{\begin{array}{l}{x<-2}\\{1-2x-x-2≤\frac{7}{2}}\end{array}\right.$ ①,或$\left\{\begin{array}{l}{-2≤x≤\frac{1}{2}}\\{-(2x-1)+x+2≤\frac{7}{2}}\end{array}\right.$ ②,或 $\left\{\begin{array}{l}{x>\frac{1}{2}}\\{2x-1+x+2≤\frac{7}{2}}\end{array}\right.$③.
解①x∈∅求得,解②求得-$\frac{1}{2}$≤x≤$\frac{1}{2}$,解③求得$\frac{1}{2}$<x≤$\frac{5}{6}$,
综合可得,不等式的解集为{x|-$\frac{1}{2}$≤x≤$\frac{5}{6}$}.

点评 本题主要考查分段函数的应用,函数的恒成立问题,求函数的最值,绝对值不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.某著名纺织集团为了减轻生产成本继续走高的压力,计划提高某种产品的价格,为此销售部在10月1日至10月5日连续五天对某个大型批发市场中该产品一天的销售量及其价格进行了调查,其中该产品的价格x(元)与销售量y(万件)之间的数据如表所示:
日期10月1日10月2日10月3日10月4日10月5日
价格x(元)99.51010.511
销售量y(万件)1110865
已知销售量y与价格x之间具有线性相关关系,其回归直线方程为:$\widehat{y}$=-3.2x+$\widehat{a}$,若该集团提高价格后该批发市场的日销售量为7.36万件,则该产品的价格约为(  )
A.14.2元B.10.8元C.14.8元D.10.2元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点F1(-2,0),离心率e=$\frac{1}{2}$.
(1)求椭圆E的方程;
(2)求以点P(2,1)为中点的弦AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将函数f(x)=cos2x的图象向左平移φ(φ>0)个单位后,若所得的图象经过点$({\frac{π}{3},0})$,则φ的最小值为$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在平面直角坐标系xOy中,椭圆$C:\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,A是椭圆的左顶点,M,N是椭圆上的两个动点,直线AM交y轴于点P.
(1)若$\overrightarrow{AP}=\frac{7}{8}\overrightarrow{AM}$,求直线AM的斜率;
(2)若a-b=1,圆C1:x2+(y-1)2=r2(0<r<1),直线AM和直线AN都与圆C1相切,当r变化时,试问直线MN是否过某个定点?若是,求出该定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果执行如图所示的程序框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则(  )
A.A+B为a1,a2,…,aN的和
B.A和B分别是a1,a2,…,aN中最大的数和最小的数
C.$\frac{A+B}{2}$为a1,a2,…,aN的算术平均数
D.A和B分别是a1,a2,…,aN中最小的数和最大的数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2016年11月20日-22日在江西省南昌市举行了首届南昌国际马拉松赛事,赛后某机构用“10分制”调查了很多人(包括普通市民,运动员,政府官员,组织者,志愿者等)对此项赛事的满意度.现从调查人群中随机抽取16名,如图茎叶图记录了他们的满意度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

(1)指出这组数据的众数和中位数;
(2)若满意度不低于9.5分,则称该被调查者的满意度为“极满意”.求从这16人中随机选取3人,至多有1人是“极满意”的概率;
(3)以这16人的样本数据来估计整个被调查群体的总体数据,若从该被调查群体(人数很多)任选3人,记ξ表示抽到“极满意”的人数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在锐角△ABC中,内角A,B,C的对边分别是a,b,c且$1+\frac{{\sqrt{3}}}{3}sin2A=2{sin^2}\frac{B+C}{2}$.
(I)求A;
(II)若△ABC的外接圆半径为$2\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+2x+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案