【题目】笔、墨、纸、砚是中国独有的文书工具,即文房四宝.笔、墨、纸、砚之名,起源于南北朝时期,其中“纸”指的是宣纸,“始于唐代,产于泾县”,因唐代泾县隶属宣州管辖,故因地得名宣纸,宣纸按质量等级分类可分为正牌和副牌(优等品和合格品)某公司生产的宣纸为纯手工制作,年产宣纸10000刀,该公司按照某种质量指标x给宣纸确定质量等级,如下表所示:
x的范围 | |||
质量等级 | 正牌 | 副牌 | 废品 |
公司在所生产的宣纸中随机抽取了一刀(100张)进行检验,得到的频率分布直方图如上图所示.已知每张正牌宣纸的利润为12元,副牌宣纸的利润为6元,废品宣纸的利润为-12元.
(1)试估计该公司生产宣纸的利润;
(2)该公司预备购买一种售价为100万元的机器改进生产工艺,这种机器使用寿命为一年,不影响产量,这种机器生产的宣纸的质量指标x服从正态分布,改进工艺后正牌和副牌宣纸的利润都将受到不同程度的影响,观测的数据如下表所示:
x的范围 | ||||
一张宣纸的利润 | 12 | 8 | 8 | 3 |
频率 | 0.5 | 0.5 | 0.5 | 0.5 |
将频率视为概率,请判断该公司是否应该购买这种机器,并说明理由
附:若,则,,.
【答案】(1)480万元;(2)应该,理由见解析
【解析】
(1)设一张纸的利润为X,由频率分布直方图,用频率估计概率得X的分布列,根据求得数据的期望,即可估计该公司生产宣纸的利润;
(2)服从正态分布,求得、、,设改进生产工艺后一张宣纸的利润为,的取值为12,8,3,,即可求得的分布列为,根据期望公式,即可求得答案.
(1)设一张纸的利润为X,由频率分布直方图,用频率估计概率得X的分布列为:
X | 12 | 6 | |
P | 0.4 | 0.4 | 0.2 |
(元)
(元)
估计该公司生产宣纸的利润为480万元.
(2)服从正态分布,
,
,
.
设改进生产工艺后一张宣纸的利润为,则的取值为12,8,3,
,
,
,
,
的分布列为
Y | 12 | 8 | 3 | |
P | 0.3413 | 0.4987 | 0.1574 | 0.0026 |
(元)
改进生产工艺后,该公司生产宣纸的利润为:(万元)
,
该公司应该购买这种机器.
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,四边形为矩形,为等腰三角形,,平面平面,且,,,分别为,的中点.
(1)证明:平面;
(2)证明:平面平面;
(3)求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆:的左、右焦点分别为,椭圆上一点与两焦点构成的三角形的周长为6,离心率为,
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线交椭圆于两点,问在轴上是否存在定点,使得为定值?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为F,点,过M的直线与椭圆E交于A,B两点,线段AB中点为C,设椭圆E在A,B两点处的切线相交于点P,O为坐标原点.
(1)证明:O、C、P三点共线;
(2)已知是抛物线的弦,所在直线过该抛物线的准线与y轴的交点,是弦在两端点处的切线的交点,小明同学猜想:在定直线上.你认为小明猜想合理吗?若合理,请写出所在直线方程;若不合理,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列,若存在常数M,使得对任意,与中至少有一个不小于M,则记作,那么下列命题正确的是( ).
A.若,则数列各项均大于或等于M;
B.若,则;
C.若,,则;
D.若,则;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com