精英家教网 > 高中数学 > 题目详情
12.增广矩阵$(\begin{array}{l}{1}&{4}&{-3}&{3}\\{3}&{0}&{9}&{4}\\{2}&{1}&{-2}&{5}\end{array})$对应方程组的系数行列式中,元素3的代数余子式的值为5.

分析 根据余子式的定义可知,M21=-$|\begin{array}{l}{4}&{-3}\\{1}&{-2}\end{array}|$,计算即可得解.

解答 解:由题意得:M21=-$|\begin{array}{l}{4}&{-3}\\{1}&{-2}\end{array}|$=5,
故答案为:5.

点评 此题考查学生掌握三阶行列式的余子式的定义,会进行行列式的运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知集合{(x,y)|$\left\{\begin{array}{l}{2x+y-4≤0}\\{x+y≥0}\\{x-y≥0}\end{array}\right.$}表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤3的概率为$\frac{9}{64}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.长方体ABCD-A1B1C1D1中,AB=4,AD=3,AA1=2,点P在棱BB1上,则AP+PC1的最小值为$\sqrt{53}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一点.过点E的平面α垂直于平面SAC.
(1)请作出平面α截四棱锥S-ABCD的截面(只需作图并写出作法);
(2)当SA=AB时,求二面角B-SC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=AD,点M是PD的中点,作ME⊥PC,交PC于点E.
(1)求证:PB∥平面MAC;
(2)求证:PC⊥平面AEM;
(3)求二面角A-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=$\frac{π}{3}$,△ADP为等边三角形.
(1)求证:AD⊥PB;
(2)若AB=2,BP=$\sqrt{6}$,求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=s-ke-x的图象在x=0处的切线方程为y=x.
(1)求s,k的值;
(2)若正项数列{an}满足${a_1}=\frac{1}{2}$,${a_n}={e^{{a_{n+1}}}}f({a_n})$,证明:数列{an}是递减数列;
(3)若$g(x)=\frac{1}{2}{x^3}-ax(x>0)$,当a>1时,讨论函数f(-x)-2与g(x)的图象公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个底面为正方形的四棱锥,其三视图如图所示,若这个四棱锥的体积为2,则此四棱锥最长的侧棱长为(  )
A.2$\sqrt{3}$B.$\sqrt{11}$C.$\sqrt{13}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD⊥底面ABCD,G为AD的中点.
(1)求证:BG⊥PD;
(2)求 点G到平面PAB的距离.

查看答案和解析>>

同步练习册答案