分析 (Ⅰ)连接BE,由直径所对圆周角为直角得到∠ABE=90°,由三角形相似的条件得到△ACD∽△AEB,再由相似三角形对应边成比例得AE•AD=AC•BC;
(Ⅱ)由切割弦定理可得CF2=AF•BF,然后再由三角形相似求得AC的值.
解答
(Ⅰ)证明:连接BE
∵AE为圆O的直径,
∴∠ABE=90°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠ABE=∠ADC,
又∵∠ACD=∠AEB,
∴△ACD∽△AEB,
∴$\frac{AD}{AB}=\frac{AC}{AE}$,
又∵AB=BC,
∴AE•ED=AC•BC;
(Ⅱ)解:∵CF是圆O的切线,
∴CF2=AF•BF,
又AF=4,CF=6,
∴BF=9,
∴AB=BF-AF=5,
又∵∠ACF=∠FBC,∠F为公共角,
∴△AFC∽△CFB,
∴$\frac{AF}{CF}=\frac{AC}{CB}$,
∴AC=$\frac{AF•CB}{CF}=\frac{10}{3}$.
点评 本题考查与线段有关的比例线段,考查相似三角形的应用,体现了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | |a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|>a+b | B. | |a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|≤a+b | C. | |a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|≥a+b | D. | |a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|<a+b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 15 | C. | 35 | D. | 75 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com