精英家教网 > 高中数学 > 题目详情
5.已知f(x)=x2•ex,若函数g(x)=f2(x)-kf(x)+1恰有三个零点,则下列结论正确的是(  )
A.k=±2B.k=$\frac{8}{{e}^{2}}$C.k=2D.k=$\frac{4}{{e}^{2}}$+$\frac{{e}^{2}}{4}$

分析 通过函数g(x)=f2(x)-kf(x)+1恰有三个零点,则要求g(x)=0有两个正解,设为:x1,x2;即要求f(x)=x1,或f(x)=x2;有3个解;转化为y=f(x)与y=x1的交点的个数以及y=f(x)与y=x2的交点的个数和为3,结合函数f(x)=x2•ex,的图象推出k=x1+x2的值即可.

解答 解:f(x)=x2•ex,若函数g(x)=f2(x)-kf(x)+1恰有三个零点,则要求g(x)=0有两个正解,设为:x1,x2;即要求f(x)=x1,或f(x)=x2;有3个解;即要求y=f(x)与y=x1的交点的个数以及y=f(x)与y=x2的交点的个数和为3,结合函数f(x)=x2•ex的图象,不妨设y=f(x)与y=x1的交点个数为2,则x1=f(-2)=$\frac{4}{{e}^{2}}$,又x1•x2=1,则x2=$\frac{{e}^{2}}{4}$,故k=x1+x2=$\frac{4}{{e}^{2}}+\frac{{e}^{2}}{4}$.
故选:D.

点评 本题考查函数的零点个数的求法,考查数形结合以及计算能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设α,β∈[0,π],且满足sinαcosβ-cosαsinβ=1,则cos(2α-β)的取值范围为(  )
A.[0,1]B.[-1,0]C.[-1,1]D.$[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.甲、乙两名游客来厦门旅游,计划分别从鼓浪屿、曾厝垵、植物园、南普陀四个旅游景点中选取3个景点参观浏览,则两人选取的景点中有且仅有两个景点相同的概率为(  )
A.$\frac{3}{16}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知{an}是等比数列,a2=1,a5=$\frac{1}{8}$,设Sn=a1a2+a2a3+…+anan+1(n∈N*),λ为实数.若对?n∈N*都有λ>Sn成立,则λ的取值范围是[$\frac{8}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某商城举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖规则如下:
1.抽奖方案有以下两种,方案a:从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中,方案b:从装有3个红球、2个白球(仅颜色相同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.
2.抽奖条件是,顾客购买商品的金额买100元,可根据方案a抽奖一次:满150元,可根据方案b抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a抽奖两次或方案b抽奖一次或方案a、b各抽奖一次).已知顾客A在该商场购买商品的金额为350元.
(1)若顾客A只选择方案a进行抽奖,求其所获奖金的期望值;
(2)要使所获奖金的期望值最大,顾客A应如何抽奖.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等腰梯形ABCD中AB∥CD,AB=2CD=4,∠BAD=60°,双曲线以A,B为焦点,且经过C,D两点,则该双曲线的离心率等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若$\frac{1}{a}$<$\frac{1}{b}$<0,则下列结论正确的是(  )
A.a2>b2B.1>($\frac{1}{2}$)b>($\frac{1}{2}$)aC.$\frac{b}{a}$+$\frac{a}{b}$<2D.aeb>bea

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年30天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,将这30天的测量结果绘制成样本频率分布直方图如图.
(Ⅰ)求图中a的值;
(Ⅱ)由频率分布直方图中估算样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列四个结论中正确的个数是(  )
①若am2<bm2,则a<b
②己知变量x和y满足关系y=-0.1x+1,若变量y与z正相关,则x与z负相关
③“己知直线m,n和平面α、β,若m⊥n,m⊥α,n∥β,则α⊥β”为真命题
④m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案