精英家教网 > 高中数学 > 题目详情

   

已知正方体ABCDA'B'C'D'的棱长为1,点M是棱AA'的中点,点O是对角线BD'的中点.

(Ⅰ)求证:OM为异面直线AA'和BD'的公垂线;

(Ⅱ)求二面角MBC'-B'的大小;

(Ⅲ)求三棱锥MOBC的体积.    

 

 

 

 

【答案】

 

 

本小题主要考查异面直线、直线与平面垂直、二面角、正方体、三棱锥体积等基础知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决数学问题的能力。

解法一:(1)连结AC,取AC中点K,则KBD的中点,连结OK

因为M是棱AA’的中点,点OBD’的中点

所以AM

所以MO  

AA’⊥AK,得MOAA

因为AKBD,AKBB’,所以AK⊥平面BDDB

所以AKBD

所以MOBD

又因为OM是异面直线AA’和BD’都相交  

OM为异面直线AA'和BD'的公垂线

(2)取BB’中点N,连结MN,则MN⊥平面BCCB

过点NNHBC’于H,连结MH

则由三垂线定理得BC’⊥MH

从而,∠MHN为二面角M-BC’-B’的平面角

MN=1,NH=Bnsin45°=

RtMNH中,tanMHN=  

故二面角M-BC’-B’的大小为arctan2

(3)易知,SOBC=SOAD,且△OBC和△OAD’都在平面BCDA’内

O到平面MAD’距离h

VM-OBC=VM-OAD=VO-MAD=SMADh=

解法二:

以点D为坐标原点,建立如图所示空间直角坐标系D-xyz

A(1,0,0),B(1,1,0),C(0,1,0),A’(1,0,1),C’(0,1,1),D’(0,0,1)

(1)因为点M是棱AA’的中点,点OBD’的中点

所以M(1,0, ),O(,,)

,=(0,0,1),=(-1,-1,1)

=0, +0=0  

所以OMAA’,OMBD

又因为OM与异面直线AA’和BD’都相交

OM为异面直线AA'和BD'的公垂线.………………………………4分

(2)设平面BMC'的一个法向量为=(x,y,z)

=(0,-1,), =(-1,0,1)

  即

z=2,则x=2,y=1,从而=(2,1,2)    

取平面BC'B'的一个法向量为=(0,1,0)

cos

由图可知,二面角M-BC'-B'的平面角为锐角

故二面角M-BC'-B'的大小为arccos………………………………………………9分

(3)易知,SOBCSBCD'A'

设平面OBC的一个法向量为=(x1,y1,z1)    

=(-1,-1,1), =(-1,0,0)

  即

z1=1,得y1=1,从而=(0,1,1)

M到平面OBC的距离d  

VMOBC…………………………………………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P在平面DD1C1C内,PD1=PC1=
2
.求证:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.
(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一个点E,可以使二面角A1-BD-E的大小为45°?如果存在,试确定点E在棱CC1上的位置;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1,则四面体A1-C1BD在面A1B1C1D1上的正投影的面积与该四面体表面积之比是
3
6
3
6

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求证:C1O∥面AB1D1
(2)求异面直线AD1与 C1O所成角的大小.

查看答案和解析>>

同步练习册答案