分析 由于函数g(x)满足:①当x>0时,g'(x)>0恒成立(g'(x)为函数g(x)的导函数);②对任意x∈R都有g(x)=g(-x),这说明函数g(x)为R上的偶函数且在[0,+∞)上为单调递增函数,且有g|(x|)=g(x),所以g[f(x)]≤g(a2-a+2)?|f(x)|≤|a2-a+2|对x∈[-3,3]恒成立,只要使得|f(x)|在定义域内的最大值小于等于|a2-a+2|的最小值,然后解出即可.
解答 解:因为函数g(x)满足:当x>0时,g'(x)>0恒成立,
且对任意x∈R都有g(x)=g(-x),
则函数g(x)为R上的偶函数且在[0,+∞)上为单调递增函数,
且有g(|x|)=g(x),
所以g[f(x)]≤g(a2-a+2)在R上恒成立,
∴|f(x)|≤|a2-a+2|对x∈[-3,3]恒成立,
只要使得定义域内|f(x)|max≤|a2-a+2|,
由于当x∈[-$\sqrt{3}$,$\sqrt{3}$]时,f(x)=$\left\{\begin{array}{l}{-{x}^{3}-3\sqrt{3}{x}^{2}-6x,x∈[-\sqrt{3},0]}\\{{x}^{3}-3x,x∈[0,\sqrt{3}]}\end{array}\right.$,
当x∈[-$\sqrt{3}$,0]时,令f′(x)=-3x2-6$\sqrt{3}$x-6=0,得x=1-$\sqrt{3}$或x=1+$\sqrt{3}$(舍去)
∴f(x)在[-$\sqrt{3}$,1-$\sqrt{3}$]上单调递增,在[1-$\sqrt{3}$,0]上单调递减,
∴f(x)max=f(1-$\sqrt{3}$)=2,f(x)min=f(-$\sqrt{3}$)=f(0)=0,
当x∈[0,$\sqrt{3}$]时,f′(x)=3x2-3=3(x+1)(x-1)=0,得x=1或x=-1(舍去),
∴f(x)在[0,1]上单调递减,在[1,$\sqrt{3}$]上单调递增,
∴f(x)min=f(1)=-2,f(x)max=f(0)=f($\sqrt{3}$)=0,
又由于对任意的x∈R都有f( $\sqrt{3}$+x)=-f(x),
∴f(2$\sqrt{3}$+x)=-f($\sqrt{3}$+x)=f(x)成立,则函数f(x)为周期函数且周期为T=2$\sqrt{3}$,
所以函数f(x)在x∈[-3,3]的最大值为2,所以令2≤|a2-a+2|解得:a≥1或a≤0.
故答案为:(-∞,0]∪[1,+∞).
点评 此题考查了利用导函数求得函数在定义域上为单调递增函数,函数的周期的定义,及利用周期可以求得当x∈[-$\sqrt{3}$,$\sqrt{3}$]时,f(x)=x3-3x,的值域为[-2,2],还考查了函数恒成立条件的应用.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 存在x0>0,使得x0<sinx0 | |
| B. | 若sinα≠$\frac{1}{2}$,则α≠$\frac{π}{6}$ | |
| C. | “-3<m<0”是“函数f(x)=x+log2x+m在区间($\frac{1}{2}$,2)上有零点”的必要不充分条件 | |
| D. | 若函数f(x)=x3+3ax2+bx+a2在x=-1有极值0,则a=2,b=9或a=1,b=3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-e | B. | e-1 | C. | -1-e | D. | e+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x+y-12=0 | B. | 2x+y+3=0 | C. | x-y+3=0 | D. | x-y-1=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com